Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Aug;2(4):180-91.
doi: 10.1093/jmcb/mjq005. Epub 2010 Apr 21.

Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?

Affiliations
Review

Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?

Toshiaki Takahashi et al. J Mol Cell Biol. 2010 Aug.

Abstract

Although the genetic basis of polyglutamine diseases has been recognized for 20 years, their molecular basis is still unclear. We have no therapeutic strategies for these intractable neurodegenerative disorders. To adequately treat patients, we must clarify the molecular basis of polyglutamine diseases. Three main issues address their molecular pathogenesis: whether the specific structure of expanded polyglutamine diseases results in cellular toxicity; what type of dysfunction causes them; and how the toxic structure causes dysfunction, that is, the link between structure and dysfunction. For structures, expanded polyglutamine proteins undergo transformation from monomers to oligomers and inclusions. One can hypothesize that one of these structures might cause the polyglutamine disease. Although the expanded polyglutamine protein is toxic, it does not explain the selective vulnerability of specific neurons in each polyglutamine disease. The normal function of each protein, including protein-protein interaction and modification, might also be crucial for pathogenesis. For dysfunction, various molecular mechanisms have been proposed, including dysregulation of transcription, impairment of the ubiquitin-proteasome system, mitochondrial dysfunction, dysregulation of intracellular Ca(2+) homeostasis, impairment of axonal transport and genotoxic stress. These hypotheses might correlate with each other. In addition, the disease pathogenesis of might not be exclusive to one particular structure or dysfunction. To develop a therapeutic strategy for patients with polyglutamine disease, identifying the most toxic structure and the earliest event in the pathogenesis is important. We review the current understanding of the toxic structure and dysfunction by expanded polyglutamine proteins and suggest directions for future studies of polyglutamine diseases.

PubMed Disclaimer

Publication types