Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009:(73):173-82.
doi: 10.1007/978-3-211-92660-4_14.

Electrophysiological and neurochemical characterization of 7-nitroindazole and molsidomine acute and sub-chronic administration effects in the dopaminergic nigrostrial system in rats

Affiliations

Electrophysiological and neurochemical characterization of 7-nitroindazole and molsidomine acute and sub-chronic administration effects in the dopaminergic nigrostrial system in rats

Vincenzo Di Matteo et al. J Neural Transm Suppl. 2009.

Abstract

Nitric oxide (NO) plays an important role in the integration of information processed by the basal ganglia nuclei. Accordingly, considerable evidence has emerged indicating a role for NO in pathophysiological conditions such as Parkinson's disease (PD) and other neurodegenerative disorders. Despite these recent advances, the nitrergic modulation of the dopamine (DA) nigrostriatal system is still unclear. In order to fill this gap, in this study we used in vivo electrophysiology and ex vivo neurochemical analysis to further investigate the effect of NO signaling in rat substantia nigra pars compacta (SNc) and the striatum. Acute and subchronic (4 days) pharmacological manipulation of the NO system using 7-nitroindazole (7-NI, 50 mg kg(-1) i.p.) and molsidomine (MOL, 40 mg kg(-1) i.p.) treatment caused significant changes in both DA SNc neurons electrophysiological properties and striatal DA and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. It is worth noting that acute inhibition of NO production decreased DA nigrostriatal neurotransmission while its subchronic inhibition was instead excitatory. Thus, a crucial role for NO in the modulation of nigrostriatal DA function is suggested together with a potential role for inhibitors of NO sythase in the treatment of PD.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources