Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 22:5:24.
doi: 10.1186/1746-1596-5-24.

Intrauterine growth restriction and placental angiogenesis

Affiliations

Intrauterine growth restriction and placental angiogenesis

Figen Barut et al. Diagn Pathol. .

Abstract

Background: Vascular endothelial growth factor (VEGF), basic-fibroblast growth factor (b-FGF), and endothelial nitric oxide synthase (eNOS) are factors that take part in placental angiogenesis. They are highly expressed during embryonic and fetal development, especially in the first trimester. In this study, we aimed to investigate the role of placental angiogenesis in the development of intrauterine growth restriction (IUGR) by comparing the levels of expression of VEGF-A, b-FGF, and eNOS in normal-term pregnancy and IUGR placentas.

Methods: The expression of VEGF-A, b-FGF, and eNOS was studied using the avidin-biotin-peroxidase method in placental tissues diagnosed as normal (n = 55) and IUGR (n = 55). Results were evaluated in a semi-quantitative manner.

Results: The expression of all the markers was significantly higher (p < 0.001) in cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, vascular smooth muscle cells, chorionic villous stromal cells, and villous vascular endothelial cells of the IUGR placentas when compared with those collected from normal-term pregnancies.

Conclusion: Increased expression of VEGF-A, b-FGF, and eNOS may be the result of inadequate uteroplacental perfusion, supporting the proposal that abnormal angiogenesis plays a role in the pathophysiology of IUGR.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Histopathologic appearances of placental tissues A; Normal placental tissue B; Increased syncytial knots and villous vascular structures in IUGR placental tissue (H&E A; B; ×200).
Figure 2
Figure 2
VEGF expression in placental tissues, A; Weak VEGF expression in cytotrophoblasts and syncytiotrophoblasts in normal pregnancy placenta, B; Strong immune reaction with VEGF in IUGR placental tissue (B-SA peroxidase, DAB, A; B; ×200).
Figure 3
Figure 3
b-FGF expression in placental tissues, A; Normal placental villous displaying weak b-FGF immune reaction, B; Strong b-FGF expression in IUGR placenta (B-SA peroxidase, DAB, A; B; ×200).
Figure 4
Figure 4
eNOS expression in placental tissues, A; Weak eNOS expression in normal pregnancy placenta, B; Strong immune reaction with eNOS in IUGR placenta (B-SA peroxidase, DAB, A; B; ×200). The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/muDdOz

References

    1. Gurel D, Özer E, Altunyurt S, Guclu S, Demir N. Expression of IGR-IR and VEGF and trophoblastic proliferative activity in placentas from pregnancies complicated by IUGR. Pathol Res Pract. 2003;199:803–809. doi: 10.1078/0344-0338-00499. - DOI - PubMed
    1. Maulik D, Evans JF, Ragolia L. Fetal growth restriction: Pathogenic mechanisms. Clin Obstet Gynecol. 2006;49:219–227. doi: 10.1097/00003081-200606000-00005. - DOI - PubMed
    1. Arroyo JA, Winn VD. Vasculogenesis and angiogenesis in the IUGR placenta. Semin Perinatol. 2008;32:172–177. doi: 10.1053/j.semperi.2008.02.006. - DOI - PubMed
    1. Ahmed A, Perkins J. Angiogenesis and intrauterine growth restriction. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:981–998. doi: 10.1053/beog.2000.0139. - DOI - PubMed
    1. Özkan S, Vural B, Dalçık C, Taş A, Dalçık H. Placental expression of insulin-like growth factor-I, fibroblast growth factor-basic and neural cell adhesion molecule in pregnancies with small for gestational age fetuses. J Perinatol. 2008;28:468–474. doi: 10.1038/jp.2008.27. - DOI - PubMed

Substances

LinkOut - more resources