Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;9(4):519-26.
doi: 10.1111/j.1474-9726.2010.00578.x. Epub 2010 Apr 23.

Cell resilience in species life spans: a link to inflammation?

Affiliations

Cell resilience in species life spans: a link to inflammation?

Caleb E Finch et al. Aging Cell. 2010 Aug.

Abstract

Species differences in life span have been attributed to cellular survival during various stressors, designated here as 'cell resilience'. In primary fibroblast cultures, cell resilience during exposure to free radicals, hypoglycemia, hyperthermia, and various toxins has shown generally consistent correlations with the species characteristic life spans of birds and mammals. However, the mechanistic links of cell resilience in fibroblast cultures to different species life spans are poorly understood. We propose that certain experimental stressors are relevant to somatic damage in vivo during inflammatory responses of innate immunity, particularly, resistance to reactive oxygen species (ROS), low glucose, and hyperthermia. According to this hypothesis, somatic cell resilience determines species differences in longevity during repeated infections and traumatic injuries in the natural environment. Infections and injury expose local fibroblasts and other cells to ROS generated by macrophages and to local temperature elevations. Systemically, acute phase immune reactions cause hypoglycemia and hyperthermia. We propose that cell resilience to somatic stressors incurred in inflammation is important in the evolution of longevity and that longer-lived species are specifically more resistant to immune-related stressors. This hypothesis further specifies Kirkwood's disposable soma theory. We suggest expanding the battery of stressors and markers used for comparative studies to additional cell types and additional parameters relevant to host defense and to their ecological specificities.

PubMed Disclaimer

References

    1. Alekseev S, Kool H, Rebel H, Fousteri M, Moser J, Backendorf C, de Gruijl FR, Vrieling H, Mullenders LH. Enhanced DDB2 expression protects mice from carcinogenic effects of chronic UV-B irradiation. Cancer Res. 2005;65:10298–10306. - PubMed
    1. Ali NA, O'Brien JM, Jr, Dungan K, Phillips G, Marsh CB, Lemeshow S, Connors AF, Jr, Preiser JC. Glucose variability and mortality in patients with sepsis. Crit Care Med. 2008;36:2316–2321. - PMC - PubMed
    1. Andziak B, Buffenstein R. Disparate patterns of age-related changes in lipid peroxidation in long-lived naked mole-rats and shorter-lived mice. Aging Cell. 2006;5:525–532. - PubMed
    1. Andziak B, O'Connor TP, Qi W, DeWaal EM, Pierce A, Chaudhuri AR, Van Remmen H, Buffenstein R. High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell. 2006;5:463–471. - PubMed
    1. Artwohl J, Hill T, Comer C, Park T. Naked mole-rats: unique opportunities and husbandry challenges. Lab Anim. 2002;31:32–36. - PubMed

Publication types