Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun 18;584(12):2526-38.
doi: 10.1016/j.febslet.2010.04.044. Epub 2010 Apr 22.

Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation

Affiliations
Free article
Review

Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation

Ping Hu et al. FEBS Lett. .
Free article

Abstract

Ser(Thr)-O-linked beta-N-acetylglucosamine (O-GlcNAc) is a ubiquitous modification of nucleocytoplasmic proteins. Extensive crosstalk exists between O-GlcNAcylation and phosphorylation, which regulates signaling in response to nutrients/stress. The development of novel O-GlcNAc detection and enrichment methods has improved our understanding of O-GlcNAc functions. Mass spectrometry has revealed O-GlcNAc's many interactions with phosphorylation-mediated signaling. However, mechanisms regulating O-GlcNAcylation and phosphorylation are quite different. Phosphorylation is catalyzed by hundreds of distinct kinases. In contrast, in mammals, uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyl transferase (OGT) and beta-D-N-acetylglucosaminidase (OGA) are encoded by single highly conserved genes. Both OGT's and OGA's specificities are determined by their transient associations with many other proteins to create a multitude of specific holoenzymes. The extensive crosstalk between O-GlcNAcylation and phosphorylation represents a new paradigm for cellular signaling.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources