Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;16(1):6-15.
doi: 10.1002/ddrr.93.

Epidemiologic and genetic aspects of spina bifida and other neural tube defects

Affiliations
Review

Epidemiologic and genetic aspects of spina bifida and other neural tube defects

Kit Sing Au et al. Dev Disabil Res Rev. 2010.

Abstract

The worldwide incidence of neural tube defects (NTDs) ranges from 1.0 to 10.0 per 1,000 births with almost equal frequencies between two major categories: anencephaly and spina bifida (SB). Epidemiological studies have provided valuable insight for (a) researchers to identify nongenetic and genetic factors contributing to etiology, (b) public health officials to design and implement policies to prevent NTD pregnancies, and (c) individuals to take precautions to reduce the chance of having an NTD-affected pregnancy. Despite extensive research, our knowledge of the genetic etiology of human NTDs is limited. Although more than 200 small animal models with NTDs exist, most of these models do not replicate the human disease phenotype. Over a hundred candidate genes have been examined for risk association to human SB. The candidate genes studied include those important in folic acid metabolism, glucose metabolism, retinoid metabolism, and apoptosis. Many genes that regulate transcription in early embryogenesis and maintain planar cell polarity have also been tested as candidates. Additionally, genes identified through mouse models of NTDs have been explored as candidates. We do not know how many genes in the human genome may confer risk for NTDs in human. Less than 20% of the studied candidate genes have been determined to confer even a minor effect on risk association. Many studies have provided conflicting conclusions due to limitations in study design that potentially affect the power of statistical analysis. Future directions such as genomewide association studies (GWAS) and whole exome or even whole genome sequencing are discussed as possible avenues to identify genes that affect risk for human NTDs.

PubMed Disclaimer

References

    1. Alwan S, Reefhuis J, Rasmussen SA, et al. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med. 2007;356:2684–2692. - PubMed
    1. Au KS, Northrup H, Kirkpatrick TJ, et al. Promotor genotype of the platelet-derived growth factor receptor-alpha gene shows population stratification but not association with spina bifida meningomyelocele. Am J Med Genet A. 2005;139:194–198. - PMC - PubMed
    1. Beaudin AE, Stover PJ. Folate-mediated one-carbon metabolism and neural tube defects: balancing genome synthesis and gene expression. Birth Defects Res C. 2007;81:183–203. - PubMed
    1. Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a mini review. Birth Defects Res A Clin Mol Teratol. 2009;85:274–284. - PMC - PubMed
    1. Blom HJ. Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009;85:295–302. - PubMed

Publication types

MeSH terms