Calcium and mitochondrial reactive oxygen species generation: how to read the facts
- PMID: 20421693
- PMCID: PMC3056350
- DOI: 10.3233/JAD-2010-100465
Calcium and mitochondrial reactive oxygen species generation: how to read the facts
Abstract
A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction are involved in the neuronal damage in Alzheimer's disease. However, the literature on the interactions between these factors is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+ overload and the production of reactive oxygen species (ROS). In this review, we survey the experimental observations on the Ca2+-induced mitochondrial ROS production, explain the sources of controversy in interpreting these results, and discuss the different molecular mechanisms underlying the effect of Ca2+ on the ROS emission by brain mitochondria.
Figures


References
-
- Moreira PI, Cardoso SM, Santos MS, Oliveira CR. The key role of mitochondria in Alzheimer’s disease. J Alzheimers Dis. 2006;9:101–110. - PubMed
-
- Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis. 2009;16:741–761. - PubMed
-
- Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:759–767. - PubMed
-
- Moreira PI, Carvalho C, Zhu XW, Smith MA, Perry G. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802:2–10. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous