Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 28:9:43.
doi: 10.1186/1476-511X-9-43.

Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

Affiliations

Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

Giovanni Annuzzi et al. Lipids Health Dis. .

Abstract

Background: The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB).

Design and methods: The levels of anandamide and 2-AG, and of the anandamide-related PPARalpha ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp.

Results: As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects.

Conclusions: The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Differential alterations of endocannabinoid, oleoylethanolamide and palmitoylethanolamide levels in the subcutaneous adipose tissue of normoweight, obese and type 2 diabetes obese subjects. Endocannabinoid levels (in pmol/g tissue, means ± SE) were measured in the subcutaneous adipose tissue in individuals with obesity and diabetes (N = 10), only obesity (N = 11), and normal weight controls (N = 8). AEA = anandamide (arachidonoylethanolamide); 2-AG = 2-arachidonoylglycerol; OEA = oleoylethanolamide; PEA = palmitoylethanolamide. ANOVA and LSD (Kruskal-Wallis for 2-AG) *p < 0.05, **p < 0.001 vs. Control and Obese.

References

    1. Di Marzo V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia. 2008;51:356–1367. - PubMed
    1. Di Marzo V, Goparaju SK, Wang L, Liu J, Bátkai S, Járai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–825. doi: 10.1038/35071088. - DOI - PubMed
    1. Matias I, Gonthier MP, Orlando P, Martiadis V, De Petrocellis L, Cervino C, Petrosino S, Hoareau L, Festy F, Pasquali R, Roche R, Maj M, Pagotto U, Monteleone P, Di Marzo V. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. Journal of Clinical Endocrinology and Metabolism. 2006;91:3171–3180. doi: 10.1210/jc.2005-2679. - DOI - PubMed
    1. Bellocchio L, Cervino C, Pasquali R, Pagotto U. The endocannabinoid system and energy metabolism. Journal of Neuroendocrinology. 2008;20:850–857. doi: 10.1111/j.1365-2826.2008.01728.x. - DOI - PubMed
    1. Pagano C, Rossato M, Vettor R. Endocannabinoids, adipose tissue and lipid metabolism. Journal of Neuroendocrinology. 2008;20:124–129. doi: 10.1111/j.1365-2826.2008.01690.x. - DOI - PubMed

Publication types

MeSH terms