Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 23;5(4):e10314.
doi: 10.1371/journal.pone.0010314.

One bacterial cell, one complete genome

Affiliations

One bacterial cell, one complete genome

Tanja Woyke et al. PLoS One. .

Abstract

While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Sulcia cell isolation and sequence coverage, closure and polishing locations along the Sulcia DMIN single cell genome.
(A) Micromanipulation of the single Sulcia cell from the sharpshooter bacteriome metasample. (B) Sequence coverage including closure and polishing locations along the finished, circular Sulcia DMIN genome with circles corresponding to following features, starting with outermost circle: (1) Illumina sequence coverage ranging from 0–3276 (mean 303+−386), (2) pyrosequence sequence coverage ranging from 0–231 (mean 42+−39), (3) Sanger sequence coverage ranging from 0–30 (mean 10+−7), (4) locations of captured (green) and uncaptured gaps (orange), (5) polishing locations corrected using Illumina (blue) and Sanger (purple) seqeunce, (6) GC content heat map (dark blue to light green = low to high values) and (7) GC skew.
Figure 2
Figure 2. Distribution of protein similarities between the two available genomes of Candidatus Sulcia muelleri from sharpshooters.

Similar articles

Cited by

References

    1. Handelsman J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004;68:669–685. - PMC - PubMed
    1. Ishoey T, Woyke T, Stepanauskas R, Novotny M, Lasken RS. Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol. 2008;11:198–204. - PMC - PubMed
    1. Raghunathan A, Ferguson HR, Jr, Bornarth CJ, Song W, Driscoll M, et al. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol. 2005;71:3342–3347. - PMC - PubMed
    1. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11:1095–1099. - PMC - PubMed
    1. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–249. - PubMed

Publication types