Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Apr;33(4):655-69.
doi: 10.1111/j.1365-3040.2009.02097.x.

Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants

Affiliations
Free article
Review

Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants

Teun Munnik et al. Plant Cell Environ. 2010 Apr.
Free article

Abstract

Polyphosphoinositides (PPIs) became famous for their role in inositol-1,4,5-trisphosphate (InsP3) mediated-Ca(2+) signalling in mammalian cells, generated through signal-activated phospholipase C (PLC) hydrolysis of the minor membrane lipid, phosphatidylinositol-4,5-bisphosphate. For many years, the plant field followed the same paradigm, however, slowly a completely different picture is emerging. Moreover, various novel PPI-signalling compounds have been identified meanwhile, with new functions and targets coming to light. These include lipids phosphorylated at the D3-position of inositol but also water-soluble inositolpolyphosphates (IPPs). For several of them, a relationship to water stress has been reported. This review summarizes the current status of PPIs and IPPs in plants and discusses their potential in osmotic stress signalling and drought.

PubMed Disclaimer

Publication types

LinkOut - more resources