Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 Feb 1;169(2):265-76.
doi: 10.1042/bj1690265.

Purification, characterization and inhibition of human skin collagenase

Purification, characterization and inhibition of human skin collagenase

D E Woolley et al. Biochem J. .

Abstract

1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32mug of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5-8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25 degrees C, producing the two characteristic products TC(A)((3/4)) and TC(B)((1/4)). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25 degrees C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37 degrees C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the alpha-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37 degrees C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins alpha(2)-macroglobulin and beta(1)-anti-collagenase both inhibited the enzyme, but alpha(1)-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Hoppe Seylers Z Physiol Chem. 1975 Nov;356(11):1783-92 - PubMed
    1. Biochem J. 1976 Jul 1;157(1):127-43 - PubMed
    1. Anal Biochem. 1960 Nov;1:228-39 - PubMed
    1. Arch Biochem Biophys. 1961 May;93:440-7 - PubMed
    1. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1014-22 - PubMed