Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:665:163-70.
doi: 10.1007/978-1-4419-1599-3_12.

FOXP3+ regulatory T-cells in chronic kidney disease: molecular pathways and clinical implications

Affiliations
Review

FOXP3+ regulatory T-cells in chronic kidney disease: molecular pathways and clinical implications

Pascal Meier. Adv Exp Med Biol. 2009.

Abstract

CD4+/FOXP3+ regulatory T-cells (Tregs) are essential for the maintenance of self-tolerance and Tregs deficiency results in spontaneous autoimmunity in both mice and humans. The forkhead box P3 (FOXP3) expression is required for both survival of Tregs precursors as well as their function. This suggests that Tregs may use multiple mechanisms to limit autoimmunity and may reflect functional heterogeneity among Tregs subsets that localize to distinct tissue environments. Both cell contact- and cytokine-based immunosuppressive mechanisms would require that Tregs be in close proximity to their targets. The fundamental regulatory activity that can be consistently demonstrated by Tregs in vivo and in vitro has stimulated great interest in developing novel strategies for treating ongoing inflammatory conditions. Patients with end-stage kidney disease (ESKD) are known to display a cellular immune dysfunction. Uremic solutes that accumulate during ESKD may be involved in these processes. In these patients, oxidative stress induced by oxLDL may increase Tregs sensitivity to Fas-mediated apoptosis in part as a consequence of 26S proteasome activation. The 26S proteasome, an ATP-dependent multisubunit protease complex found in the cytoplasm and in the nucleus of all eukaryotic cells, constitutes the central proteolytic machinery of the ubiquitin/proteasome system. Considering the effect of uremia and oxLDL, Tregs from patients with ESKD exhibit early cell-cycle arrest and become apoptotic. These phenomena are the consequence of the oxLDL inhibited proteasome proteolytic activity of p27(Kipl) and Bax proteins in Tregs. This may be one mechanistic explanation of the cellular immune dysfunction in patients with ESKD and may have important implications in clinics, since this response could contribute to the micro-inflammation and atherogenesis encountered in this population.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources