Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;14(2):R77.
doi: 10.1186/cc8990. Epub 2010 Apr 29.

Delta inflation: a bias in the design of randomized controlled trials in critical care medicine

Affiliations

Delta inflation: a bias in the design of randomized controlled trials in critical care medicine

Scott K Aberegg et al. Crit Care. 2010.

Abstract

Introduction: Mortality is the most widely accepted outcome measure in randomized controlled trials of therapies for critically ill adults, but most of these trials fail to show a statistically significant mortality benefit. The reasons for this are unknown.

Methods: We searched five high impact journals (Annals of Internal Medicine, British Medical Journal, JAMA, The Lancet, New England Journal of Medicine) for randomized controlled trials comparing mortality of therapies for critically ill adults over a ten year period. We abstracted data on the statistical design and results of these trials to compare the predicted delta (delta; the effect size of the therapy compared to control expressed as an absolute mortality reduction) to the observed delta to determine if there is a systematic overestimation of predicted delta that might explain the high prevalence of negative results in these trials.

Results: We found 38 trials meeting our inclusion criteria. Only 5/38 (13.2%) of the trials provided justification for the predicted delta. The mean predicted delta among the 38 trials was 10.1% and the mean observed delta was 1.4% (P < 0.0001), resulting in a delta-gap of 8.7%. In only 2/38 (5.3%) of the trials did the observed delta exceed the predicted delta and only 7/38 (18.4%) of the trials demonstrated statistically significant results in the hypothesized direction; these trials had smaller delta-gaps than the remainder of the trials (delta-gap 0.9% versus 10.5%; P < 0.0001). For trials showing non-significant trends toward benefit greater than 3%, large increases in sample size (380% - 1100%) would be required if repeat trials use the observed delta from the index trial as the predicted delta for a follow-up study.

Conclusions: Investigators of therapies for critical illness systematically overestimate treatment effect size (delta) during the design of randomized controlled trials. This bias, which we refer to as "delta inflation", is a potential reason that these trials have a high rate of negative results."Absence of evidence is not evidence of absence."

PubMed Disclaimer

Figures

Figure 1
Figure 1
Plot of observed versus predicted delta (with associated 95% confidence intervals for observed delta) of 38 trials included in the analysis. Point estimates of treatment effect (deltas) are represented by green circles for non-statistically significant trials and red triangles for statistically significant trials. Numbers within the circles and triangles refer to the trials as referenced in Additional file 1. The blue 'unity line' with a slope equal to one indicates perfect concordance between observed and predicted delta; for visual clarity and to reduce distortions, the slope is reduced to zero (and the x-axis is horizontally expanded) where multiple predicted deltas have the same value and where 95% confidence intervals cross the unity line. If predictions of delta were accurate and without bias, values of observed delta would be symmetrically scattered above and below the unity line. If there is directional bias, values will fall predominately on one side of the line as they do in the figure.

Comment in

References

    1. Ospina-Tascon GA, Buchele GL, Vincent JL. Multicenter, randomized, controlled trials evaluating mortality in intensive care: doomed to fail? Crit Care Med. 2008;36:1311–1322. doi: 10.1097/CCM.0b013e318168ea3e. - DOI - PubMed
    1. Berghe G van den, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300. - DOI - PubMed
    1. Berghe G Van den, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, Van Wijngaerden E, Bobbaers H, Bouillon R. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–461. doi: 10.1056/NEJMoa052521. - DOI - PubMed
    1. The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–1297. doi: 10.1056/NEJMoa0810625. - DOI - PubMed
    1. Annane D, Sébille V, Charpentier C, Bollaert PE, François B, Korach JM, Capellier G, Cohen Y, Azoulay E, Troché G, Chaumet-Riffaud P, Bellissant E. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871. doi: 10.1001/jama.288.7.862. - DOI - PubMed