Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;16(20):2279-95.
doi: 10.2174/138161210791792868.

Biofilms: an extra hurdle for effective antimicrobial therapy

Affiliations
Review

Biofilms: an extra hurdle for effective antimicrobial therapy

P Cos et al. Curr Pharm Des. 2010.

Abstract

Since the 1960's much research has focused on biofilms, i.e. microbial-derived populations irreversibly attached to a surface and embedded in a self-produced polymeric matrix. In this matrix, microbial cells are protected from detrimental external factors such as heat, UV radiation and the host immune system. The most relevant biofilm-related property is the unusual high resistance to antimicrobial therapy, although the origin of this extreme resistance is still the subject of debate. Besides an overview of the main characteristics of biofilms, this review discusses the different resistance mechanisms that lead to increased biofilm-related morbidity and mortality. Adherent communities are involved in at least 65% of all human bacterial infections, particularly in cystic fibrosis and several nosocomial device- related infections. Even in healthy immunocompetent individuals, biofilm infections are rarely resolved and usually persist until the colonized surface is removed from the body. Fundamental research aiming to develop new anti-biofilm strategies will largely depend on the availability of appropriate in vitro models for production and quantification of biofilms. This review describes the most frequently used in vitro biofilm models with respect to the different pitfalls that can emerge from in vitro biofilm research. Despite extensive efforts, no antimicrobial drug has yet been found that completely eradicates adherent microbial populations. The advantages and disadvantages of the currently available therapies are described with a particular focus on antibiotics and biocides. The options and benefits of future antibiofilm therapies are discussed.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources