Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;7(10):1438-45.
doi: 10.1016/j.hrthm.2010.04.030. Epub 2010 Apr 28.

Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias

Affiliations

Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias

Duy T Nguyen et al. Heart Rhythm. 2010 Oct.

Abstract

Background: Post-myocardial infarction (MI) complications include ventricular tachycardia (VT). Excessive non-MI fibrosis, involving the infarct border zone (IBZ) and beyond, is an important substrate for VT vulnerability.

Objective: This study assessed whether the antifibrotic agent pirfenidone can mitigate fibrosis in remodeling and determined its effects on myocardial function and VT susceptibility in a rodent MI model.

Methods: We studied 2 groups of rats undergoing MI 1 week prior to treatment: a control group (n = 15) treated with placebo and a pirfenidone group (n = 15). We performed serial echocardiograms, and after 4 weeks of treatment, we conducted electrophysiological and optical mapping studies as well as histology.

Results: There was less decline in left ventricular (LV) ejection fraction for pirfenidone-treated rats, 8.6% versus 24.3% in controls (P <0.01). Pirfenidone rats also had lower rates of VT inducibility, 28.6% versus 73.3% in control rats (P <0.05). Furthermore, pirfenidone-treated rats had faster conduction velocities in their IBZs compared with controls, at all pacing cycle lengths (P <0.05). Rats treated with pirfenidone also had smaller infarct dense scar (8.9% of LV myocardium vs. 15.7% in controls, P <0.014), less total LV fibrosis (15% vs. 30% in controls, P <0.003), and less nonscar fibrosis (6.6% vs. 12.6% in controls, P <0.006).

Conclusion: Pirfenidone decreased total and nonscar fibrosis in a rat MI model, which correlated with decreased infarct scar, improved LV function, and decreased VT susceptibility. Directly targeting post-MI fibrotic substrates may have a role in limiting infarct-dense scar, improving LV function, and reducing VT vulnerability.

PubMed Disclaimer

Publication types

MeSH terms