Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;47(5):458-67.
doi: 10.1016/j.ceca.2010.04.001.

Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle

Affiliations

Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle

Joshua N Edwards et al. Cell Calcium. 2010 May.

Abstract

Skeletal muscle is highly specialized for the rapid delivery of Ca(2+) to the contractile apparatus during excitation-contraction coupling (EC coupling). Previous studies have shown the presence of a relatively fast-activated store-operated Ca(2+) entry (SOCE) mechanism (<1s) to be present in skeletal muscle, unlike the situation occurring in non-excitable cells. We simultaneously imaged [Ca(2+)] in the t-system and cytoplasm in mechanically skinned fibers during SR Ca(2+) release and observed both cell-wide Ca(2+) release and Ca(2+) waves. SOCE activation followed cell-wide Ca(2+) release from high sarcoplasmic reticulum (SR) [Ca(2+)] ([Ca(2+)](SR)) by seconds, consistent with depletion of [Ca(2+)](SR) to an absolute threshold for SOCE and an unformed SOCE complex at high [Ca(2+)](SR). Ca(2+) waves occurred at low [Ca(2+)](SR), close to the threshold for SOCE, minimizing the time between Ca(2+) release and Ca(2+) influx. Local activation of SOCE during Ca(2+) waves occurred in approximately 27ms following local initiation of SR depletion indicating a steep relationship between [Ca(2+)](SR) and SOCE activation. Most of this delay was due to slow release of Ca(2+) from SR, leaving only milliseconds at most for the activation of Ca(2+) entry following store depletion. SOCE was also observed to deactivate effectively instantly during store refilling at low [Ca(2+)](SR). These rapid kinetics of SOCE persisted as subsequent Ca(2+) waves propagated along the fiber. Thus we show for the first time millisecond activation and deactivation of SOCE during low amplitude [Ca(2+)](SR) oscillations at low [Ca(2+)](SR). To account for the observed Ca(2+) movements we propose the SOCE complex forms during the progressive depletion of [Ca(2+)](SR) prior to reaching the activation threshold of SOCE and this complex remains stable at low [Ca(2+)](SR).

PubMed Disclaimer

Publication types

LinkOut - more resources