Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Sep;12(3):348-60.
doi: 10.1208/s12248-010-9183-3. Epub 2010 May 1.

Ocular drug delivery

Affiliations
Review

Ocular drug delivery

Ripal Gaudana et al. AAPS J. 2010 Sep.

Abstract

Ocular drug delivery has been a major challenge to pharmacologists and drug delivery scientists due to its unique anatomy and physiology. Static barriers (different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers), dynamic barriers (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution), and efflux pumps in conjunction pose a significant challenge for delivery of a drug alone or in a dosage form, especially to the posterior segment. Identification of influx transporters on various ocular tissues and designing a transporter-targeted delivery of a parent drug has gathered momentum in recent years. Parallelly, colloidal dosage forms such as nanoparticles, nanomicelles, liposomes, and microemulsions have been widely explored to overcome various static and dynamic barriers. Novel drug delivery strategies such as bioadhesive gels and fibrin sealant-based approaches were developed to sustain drug levels at the target site. Designing noninvasive sustained drug delivery systems and exploring the feasibility of topical application to deliver drugs to the posterior segment may drastically improve drug delivery in the years to come. Current developments in the field of ophthalmic drug delivery promise a significant improvement in overcoming the challenges posed by various anterior and posterior segment diseases.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Routes of drug administration to eye
Fig. 2
Fig. 2
Circumvention of efflux proteins by prodrug approach

References

    1. Ananthula HK, Vaishya RD, Barot M, Mitra AK. Duane's Ophthalmology. In: Tasman W, Jaeger EA, editors. Bioavailability. Philadelphia: Lippincott Williams & Wilkins; 2009.
    1. Gipson IK, Argueso P. Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol. 2003;231:1–49. doi: 10.1016/S0074-7696(03)31001-0. - DOI - PubMed
    1. Ahmed I. The noncorneal route in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 2003. pp. 335–63.
    1. Klyce SD, Crosson CE. Transport processes across the rabbit corneal epithelium: a review. Curr Eye Res. 1985;4(4):323–31. doi: 10.3109/02713688509025145. - DOI - PubMed
    1. McLaughlin BJ, Caldwell RB, Sasaki Y, Wood TO. Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes. Curr Eye Res. 1985;4(9):951–61. doi: 10.3109/02713689509000002. - DOI - PubMed

Publication types

LinkOut - more resources