Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Dec 15;53(5):1076-90.
doi: 10.1016/j.jpba.2010.04.005. Epub 2010 Apr 13.

Advances in capillary electrophoretic enzyme assays

Affiliations
Review

Advances in capillary electrophoretic enzyme assays

Yi Fan et al. J Pharm Biomed Anal. .

Abstract

In recent years, capillary electrophoresis (CE) has become a frequently used tool for enzyme assays due to its well-recognized advantages such as high separation efficiency, short analysis time, small sample and chemicals consumption. The published applications cover all aspects of enzyme characterization and analysis including the determination of the enzyme activity, substrate and modulator characterization and identification, as well as the investigation of enzyme-mediated metabolic pathways of bioactive molecules. The CE assays may be classified into two general categories: (1) pre-capillary assays where the reactions are performed offline followed by CE analysis of the substrates and products and (2) online assays when the enzyme reaction and separation of the analytes are performed in the same capillary. In online assays, the enzyme may be either immobilized or in solution. The latter is also referred to as electrophoretically mediated microanalysis (EMMA). The present review will highlight the literature of CE-based enzyme assays from 2006 to November 2009. One section will be devoted to applications of microfluidic devices.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources