The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease
- PMID: 20439476
- PMCID: PMC2897371
- DOI: 10.1128/IAI.01311-09
The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease
Abstract
Lipopolysaccharide (LPS), a major component of the meningococcal outer membrane, is sensed by the host through activation of Toll-like receptor 4 (TLR4). Recently, we demonstrated that a surprisingly large fraction of Neisseria meningitidis disease isolates are lipid A mutants, due to inactivating mutations in the lpxL1 gene. The lpxL1 mutants activate human TLR4 much less efficiently than wild-type bacteria, which may be advantageous by allowing them to escape from the innate immune system. Here we investigated the influence of lipid A structure on virulence in a mouse model of meningococcal sepsis. One limitation, however, is that murine TLR4 recognizes lpxL1 mutant bacteria much better than human TLR4. We show that an lpxL2 mutant, another lipid A mutant lacking an acyl chain at a different position, activates murine TLR4 less efficiently than the lpxL1 mutant. Therefore, the lpxL2 mutant in mice might be a better model for infections with lpxL1 mutants in humans. Interestingly, we found that the lpxL2 mutant is more virulent in mice than the wild-type strain, whereas the lpxL1 mutant is actually much less virulent than the wild-type strain. These results demonstrate the crucial role of N. meningitidis lipid A structure in virulence.
Figures







Similar articles
-
Naturally occurring lipid A mutants in neisseria meningitidis from patients with invasive meningococcal disease are associated with reduced coagulopathy.PLoS Pathog. 2009 Apr;5(4):e1000396. doi: 10.1371/journal.ppat.1000396. Epub 2009 Apr 24. PLoS Pathog. 2009. PMID: 19390612 Free PMC article.
-
Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis.Infect Immun. 2008 Aug;76(8):3801-7. doi: 10.1128/IAI.00005-08. Epub 2008 May 19. Infect Immun. 2008. PMID: 18490457 Free PMC article.
-
Neisseria meningitidis lipid A mutant LPSs function as LPS antagonists in humans by inhibiting TLR 4-dependent cytokine production.Innate Immun. 2011 Dec;17(6):517-25. doi: 10.1177/1753425910383999. Epub 2010 Nov 18. Innate Immun. 2011. PMID: 21088052
-
Meningococcal lipopolysaccharides: virulence factor and potential vaccine component.Microbiol Rev. 1993 Mar;57(1):34-49. doi: 10.1128/mr.57.1.34-49.1993. Microbiol Rev. 1993. PMID: 8464406 Free PMC article. Review.
-
Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections.Pathog Dis. 2017 Apr 1;75(3). doi: 10.1093/femspd/ftx030. Pathog Dis. 2017. PMID: 28423169 Review.
Cited by
-
Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis.mBio. 2014 Sep 30;5(5):e01921-14. doi: 10.1128/mBio.01921-14. mBio. 2014. PMID: 25271291 Free PMC article.
-
Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea.Infect Immun. 2014 Jan;82(1):184-92. doi: 10.1128/IAI.00890-13. Epub 2013 Oct 14. Infect Immun. 2014. PMID: 24126526 Free PMC article.
-
The choroid plexus synergizes with immune cells during neuroinflammation.Cell. 2024 Sep 5;187(18):4946-4963.e17. doi: 10.1016/j.cell.2024.07.002. Epub 2024 Jul 31. Cell. 2024. PMID: 39089253
-
Invasive meningococcal capsular group Y disease, England and Wales, 2007-2009.Emerg Infect Dis. 2012 Jan;18(1):63-70. doi: 10.3201/eid1801.110901. Emerg Infect Dis. 2012. PMID: 22261040 Free PMC article.
-
A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity.Front Immunol. 2016 Dec 8;7:562. doi: 10.3389/fimmu.2016.00562. eCollection 2016. Front Immunol. 2016. PMID: 28008331 Free PMC article.
References
-
- Akashi, S., Y. Nagai, H. Ogata, M. Oikawa, K. Fukase, S. Kusumoto, K. Kawasaki, M. Nishijima, S. Hayashi, M. Kimoto, and K. Miyake. 2001. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13:1595-1599. - PubMed
-
- An, H., H. Xu, Y. Yu, M. Zhang, R. Qi, X. Yan, S. Liu, W. Wang, Z. Guo, Z. Qin, and X. Cao. 2002. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol. Lett. 81:165-169. - PubMed
-
- Banus, H. A., R. J. Vandebriel, R. H. de, J. A. Dormans, N. J. Nagelkerke, F. R. Mooi, B. Hoebee, H. J. van Kranen, and T. G. Kimman. 2006. Host genetics of Bordetella pertussis infection in mice: significance of Toll-like receptor 4 in genetic susceptibility and pathobiology. Infect. Immun. 74:2596-2605. - PMC - PubMed
-
- Bernheiden, M., J. M. Heinrich, G. Minigo, C. Schutt, F. Stelter, M. Freeman, D. Golenbock, and R. S. Jack. 2001. LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J. Endotoxin Res. 7:447-450. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical