Statistical design and analysis of RNA sequencing data
- PMID: 20439781
- PMCID: PMC2881125
- DOI: 10.1534/genetics.110.114983
Statistical design and analysis of RNA sequencing data
Abstract
Next-generation sequencing technologies are quickly becoming the preferred approach for characterizing and quantifying entire genomes. Even though data produced from these technologies are proving to be the most informative of any thus far, very little attention has been paid to fundamental design aspects of data collection and analysis, namely sampling, randomization, replication, and blocking. We discuss these concepts in an RNA sequencing framework. Using simulations we demonstrate the benefits of collecting replicated RNA sequencing data according to well known statistical designs that partition the sources of biological and technical variation. Examples of these designs and their corresponding models are presented with the goal of testing differential expression.
Figures








Similar articles
-
Characterizing natural variation using next-generation sequencing technologies.Trends Genet. 2009 Oct;25(10):463-71. doi: 10.1016/j.tig.2009.09.003. Epub 2009 Oct 2. Trends Genet. 2009. PMID: 19801172 Free PMC article. Review.
-
Biological Perspectives of RNA-Sequencing Experimental Design.Methods Mol Biol. 2021;2243:327-337. doi: 10.1007/978-1-0716-1103-6_17. Methods Mol Biol. 2021. PMID: 33606266
-
Genetics of movement disorders in the next-generation sequencing era.Mov Disord. 2016 Apr;31(4):458-70. doi: 10.1002/mds.26521. Epub 2016 Feb 22. Mov Disord. 2016. PMID: 26899883 Review.
-
Differential expression--the next generation and beyond.Brief Funct Genomics. 2012 Jan;11(1):57-62. doi: 10.1093/bfgp/elr041. Epub 2011 Dec 30. Brief Funct Genomics. 2012. PMID: 22210853 Review.
-
Advances in whole genome sequencing technology.Curr Pharm Biotechnol. 2011 Feb 1;12(2):293-305. doi: 10.2174/138920111794295729. Curr Pharm Biotechnol. 2011. PMID: 21050163 Review.
Cited by
-
Transcriptional profiling by RNA-Seq of peri-attachment porcine embryos generated by a variety of assisted reproductive technologies.Physiol Genomics. 2013 Jul 15;45(14):577-89. doi: 10.1152/physiolgenomics.00094.2012. Epub 2013 May 21. Physiol Genomics. 2013. PMID: 23695885 Free PMC article.
-
Characterizing Mutational Signatures in Human Cancer Cell Lines Reveals Episodic APOBEC Mutagenesis.Cell. 2019 Mar 7;176(6):1282-1294.e20. doi: 10.1016/j.cell.2019.02.012. Cell. 2019. PMID: 30849372 Free PMC article.
-
Comparative studies of differential gene calling using RNA-Seq data.BMC Bioinformatics. 2013;14 Suppl 13(Suppl 13):S7. doi: 10.1186/1471-2105-14-S13-S7. Epub 2013 Oct 1. BMC Bioinformatics. 2013. PMID: 24267181 Free PMC article.
-
RNA-seq differential expression studies: more sequence or more replication?Bioinformatics. 2014 Feb 1;30(3):301-4. doi: 10.1093/bioinformatics/btt688. Epub 2013 Dec 6. Bioinformatics. 2014. PMID: 24319002 Free PMC article.
-
Injured adult neurons regress to an embryonic transcriptional growth state.Nature. 2020 May;581(7806):77-82. doi: 10.1038/s41586-020-2200-5. Epub 2020 Apr 15. Nature. 2020. PMID: 32376949
References
-
- Agresti, A., 2002. Categorical Data Analysis, Ed. 2. Wiley, Hoboken, NJ.
-
- Audic, S., and J. Claverie, 1997. The significance of digital gene expression profiles. Genome Res. 7 986–995. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources