Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
- PMID: 20441794
- DOI: 10.1016/j.neuroimage.2010.04.193
Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
Abstract
We describe progress towards fully automatic segmentation of the hippocampus (HC) and amygdala (AG) in human subjects from MRI data. Three methods are described and tested with a set of MRIs from 80 young normal controls, using manual labeling of the HC and AG as a gold standard. The methods include: 1) our ANIMAL atlas-based method that uses non-linear registration to a pre-labeled non-linear average template (ICBM152). HC and AG labels, defined on the template are mapped through the inverse transformation to segment these structures on the subject's MRI. 2) We select the most similar MRI from the set of 80 labeled datasets to use as a template in the standard ANIMAL segmentation scheme. 3) We use label fusion techniques to combine segmentations from the 'n' most similar templates. The label fusion technique yields an optimal median Dice Kappa of 0.886 and similarity of 0.795 for HC, and 0.826 and 0.703 respectively for AG.
Copyright 2010 Elsevier Inc. All rights reserved.
Similar articles
-
Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI.Med Image Comput Comput Assist Interv. 2009;12(Pt 2):592-600. doi: 10.1007/978-3-642-04271-3_72. Med Image Comput Comput Assist Interv. 2009. PMID: 20426160
-
Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease.Neuroimage. 2007 Feb 1;34(3):996-1019. doi: 10.1016/j.neuroimage.2006.10.035. Epub 2006 Dec 18. Neuroimage. 2007. PMID: 17178234
-
Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm.Neuroimage. 2007 Feb 1;34(3):1160-70. doi: 10.1016/j.neuroimage.2006.07.046. Epub 2006 Dec 5. Neuroimage. 2007. PMID: 17150376
-
Defining the human hippocampus in cerebral magnetic resonance images--an overview of current segmentation protocols.Neuroimage. 2009 Oct 1;47(4):1185-95. doi: 10.1016/j.neuroimage.2009.05.019. Epub 2009 May 15. Neuroimage. 2009. PMID: 19447182 Free PMC article. Review.
-
Automated methods for hippocampus segmentation: the evolution and a review of the state of the art.Neuroinformatics. 2015 Apr;13(2):133-50. doi: 10.1007/s12021-014-9243-4. Neuroinformatics. 2015. PMID: 26022748 Review.
Cited by
-
The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.Brain Behav. 2016 Mar 22;6(4):e00457. doi: 10.1002/brb3.457. eCollection 2016 Apr. Brain Behav. 2016. PMID: 27066310 Free PMC article.
-
Multi-Template Mesiotemporal Lobe Segmentation: Effects of Surface and Volume Feature Modeling.Front Neuroinform. 2018 Jul 12;12:39. doi: 10.3389/fninf.2018.00039. eCollection 2018. Front Neuroinform. 2018. PMID: 30050423 Free PMC article.
-
Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning.Neuroinformatics. 2019 Oct;17(4):563-582. doi: 10.1007/s12021-019-09417-y. Neuroinformatics. 2019. PMID: 30877605
-
High-Dimensional Medial Lobe Morphometry: An Automated MRI Biomarker for the New AD Diagnostic Criteria.Int J Alzheimers Dis. 2014;2014:278096. doi: 10.1155/2014/278096. Epub 2014 Aug 31. Int J Alzheimers Dis. 2014. PMID: 25254139 Free PMC article.
-
Performing label-fusion-based segmentation using multiple automatically generated templates.Hum Brain Mapp. 2013 Oct;34(10):2635-54. doi: 10.1002/hbm.22092. Epub 2012 May 19. Hum Brain Mapp. 2013. PMID: 22611030 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical