Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May;27(5):668-80.
doi: 10.1039/b906682a. Epub 2010 Mar 25.

Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors

Affiliations
Review

Bacterial metal-sensing proteins exemplified by ArsR-SmtB family repressors

Deenah Osman et al. Nat Prod Rep. 2010 May.

Abstract

Detecting deficiency and excess of different metal ions is fundamental for every organism. Our understanding of how metals are detected by bacteria is exceptionally well advanced, and multiple families of cytoplasmic DNA-binding, metal-sensing transcriptional regulators have been characterised(ArsR-SmtB, MerR, CsoR-RcnR, CopY, DtxR, Fur, NikR). Some of the sensors regulate a single gene while others act globally controlling transcription of regulons. They not only modulate the expression of genes directly associated with metal homeostasis, but can also alter metabolism to reduce the cellular demand for metals in short supply. Different representatives of each of the sensor families can regulate gene expression in response to different metals, and the residues that form the sensory metal-binding sites have been defined in a number of these proteins. Indeed, in the case of theArsR-SmtB family, multiple distinct metal-sensing motifs (and one non-metal-sensing motif) have been identified which correlate with the detection of different metals. This review summarises the different families of bacterial metal-sensing transcriptional regulators and discusses current knowledge regarding the mechanisms of metal-regulated gene expression and the structural features of sensory metal-binding sites focusing on the ArsR-SmtB family. In addition, recent progress in understanding the principles governing the ability of the sensors to detect specific metals within a cell and the coordination of the different sensors to control cellular metal levels is discussed.

PubMed Disclaimer

LinkOut - more resources