Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 26;132(20):7138-52.
doi: 10.1021/ja100740t.

Total synthesis and structural revision of vannusals A and B: synthesis of the originally assigned structure of vannusal B

Affiliations

Total synthesis and structural revision of vannusals A and B: synthesis of the originally assigned structure of vannusal B

K C Nicolaou et al. J Am Chem Soc. .

Abstract

The total synthesis of the originally assigned structure of vannusal B (2) and its diastereomer (d-2) are described. Initial forays into these structures with model systems revealed the viability of a metathesis-based approach and a SmI(2)-mediated strategy for the key cyclization to forge the central region of the molecule, ring C. The former approach was abandoned in favor of the latter when more functionalized substrates failed to enter the cyclization process. The successful, devised convergent strategy based on the SmI(2)-mediated ring closure utilized vinyl iodide (-)-26 and aldehyde fragment (+/-)-86 as key building blocks, whose lithium-mediated coupling led to isomeric coupling products (+)-87 and (-)-88 (as shown in Scheme 17 in the article). Intermediate (-)-88 was converted, via (-)-89 and (-)-90/(+)-91, to vannusal B structure 2 (as shown in Scheme 18 in the article), whose spectroscopic data did not match those reported for the natural product. Similarly, intermediate (+)-25, obtained through coupling of vinyl iodide (-)-26 and aldehyde (+/-)-27 (as shown in Scheme 13 in the article) was transformed via intermediates (-)-97 and (+)-98 (as shown in Scheme 19 in the article) to diastereomeric vannusal B structure (+)-d-2 (as shown in Scheme 19 in the article) which was also proven spectroscopically to be non-identical to the naturally occurring substance. These investigations led to the discovery and development of a number of new synthetic technologies that set the stage for the solution of the vannusal structural conundrum.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Originally assigned structures of vannusals A (1) and B (2).
Figure 2
Figure 2
X-ray derived ORTEP of triol (±)-41.
Figure 3
Figure 3
NOEs observed for compounds (+)-95 and (+)-98.
Figure 4
Figure 4
Stereocontrolling steric interactions within transition states 12-TSa-d leading from substrate (±)-12 to cyclization product (±)-11 on exposure to SmI2 (see Scheme 5).
Figure 5
Figure 5
Stereocontrolling steric interactions within transition states (73-TSa-d) from cyclization precursor (−)-73 leading to formation of products (−)-77 and (+)-78 (see Table 2).
Figure 6
Figure 6
Stereocontrolling steric interactions within transition states 89-TSa-d leading to products (−)-90 and (+)-91 from cyclization precursor (−)-89 on exposure to SmI2 (see Scheme 17).
Figure 7
Figure 7
Stereocontrolling steric interactions within transition states 97-TSa-d leading from cyclization precursor (−)-97 to cyclization product (+)-98 on exposure to SmI2 (see Scheme 19).
Scheme 1
Scheme 1
Biosynthetic Hypotheses for Vannusals A and B
Scheme 2
Scheme 2
Ring Closing Metathesis-based Strategy to Vannusal Model System 7
Scheme 3
Scheme 3
Samarium Diiodide Cyclization-based Strategy to Vannusal Model System 11
Scheme 4
Scheme 4
Construction of Model Aldehyde (±)-13a aReagents and conditions: (a) bromocatecholborane (3.5 equiv), CH2Cl2, 50 °C, 3 h; (b) PPTS (1.0 equiv), 2,2-dimethoxypropane:DMF (1:1), 50 °C, 12 h, 84% for the two steps; (c) TBDPSCl (1.5 equiv), imidazole (3.0 equiv), CH2Cl2, 25 °C, 6 h, 92%; (d) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 82%; (e) KH (10 equiv), allyl chloride (30 equiv), HMPA (10 equiv), DME, 25 °C, 12 h, 85%; (f) 1,2-dichlorobenzene, 200 °C (µ-wave), 20 min; then NaBH4 (10 equiv), MeOH, 1 h, 25 °C, 82% for the two steps; (g) BOMCl (5.0 equiv), i-Pr2NEt (15 equiv), n-Bu4NI (1.0 equiv), CH2Cl2, 50 °C, 12 h; (h) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 81% for the two steps; (i) TBSCl (10 equiv), DBU (20 equiv), CH2Cl2, 25 °C, 12 h; (j) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 80% for the two steps.
Scheme 5
Scheme 5
Synthesis of Vannusal Model System (±)-11 Through Shapiro Coupling and SmI2-Mediated Cyclizationa aReagents and conditions: (a) 14 (2.0 equiv), n-BuLi (2.5 M hexanes, 4.0 equiv), THF, −78 → −20 °C, 30 min; then (±)-13 (1.0 equiv), THF, −40 → 0 °C, 20 min; (b) TBAF (1.0 M in THF), THF, 25 °C, 12 h, 88% for the two steps; (c) TESCl (2.0 equiv), imidazole (5.0 equiv), CH2Cl2, 25 °C, 1 h; (d) KHMDS (0.5 M in toluene, 5.0 equiv), ClCO2Me (10 equiv), Et3N (10 equiv), THF, −78 → 25 °C, 20 min; (e) PPTS (1.0 equiv), MeOH, 25 °C, 6 h, 90% for the three steps; (f) PhI(OAc)2 (2.0 equiv), TEMPO (1.0 equiv), CH2Cl2, 25 °C, 16 h, 90%; (g) SmI2 (0.1 M in THF, 5.0 equiv), HMPA (15 equiv), THF, 25 °C, 0.5 h, 33%; (h) Ac2O (10 equiv), 4-DMAP (1.0 equiv), Et3N (10 equiv), CH2Cl2, 5 h, 92%.
Scheme 6
Scheme 6
Retrosynthetic Analysis of the Originally Assigned Structure of Vannusal B (2) and Its Diastereomer (d-2)
Scheme 7
Scheme 7
Stereoselective Installation of the C21 Stereocenter Through a Ketone–Ketone Aldol Reactiona aReagents and conditions: (a) Br-catecholborane (3.5 equiv), CH2Cl2, 50 °C, 3 h; (b) TIPSCl (2.0 equiv), imidazole (6.0 equiv), DMF, 25 °C, (±)-35: 70% for the two steps, (+)-36: 85% for the two steps; (c) IBX (3.0 equiv), DMSO, 50 °C, 4 h, (±)-37: 90%, (+)-38: 81%; (d) TiCl4 (1.0 M in CH2Cl2, 1.2 equiv), Et3N (3.0 equiv), CH2Cl2, −78 → −30 °C, 30 min; then acetone (10 equiv), −92 °C, 12 h (9:1 dr); (e) TESOTf (3.0 equiv), 2,6-lut. (5.0 equiv), −78 → −40 °C, 1 h, (±)-39: 81% for the two steps, (+)-40: 73% for the two steps.
Scheme 8
Scheme 8
Construction of the Completed “Northeastern” Fragment of the Originally Assigned Structure of Vannusal B in Racemic [(±)-27] and Enantiopure [(+)-27] Formsa aReagents and conditions: (a) NaBH4 (20 equiv), THF:MeOH (1:1), −10 → 25 °C, 4 h; (b) PPTS (0.2 equiv), EtOH, 25 °C, 2 h, (±)-41: 85% for the two steps, (+)-42: 71% for the two steps; (c) 2-methoxypropene (20 equiv), CSA (0.1 equiv), CH2Cl2, −78 → −40 °C, 2 h, (±)-43: 82%, (+)-44: 91%; (d) SEMCl (3.0 equiv), i-Pr2NEt (10 equiv), n-Bu4NI (1.0 equiv), CH2Cl2, 50 °C, 24 h; (e) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 88% for the two steps; (f) KH (10 equiv), allyl chloride (20 equiv), HMPA (5.0 equiv), DME, −10 → 25 °C, 5 h, 88%; (g) i-Pr2NEt (1.0 equiv), 1,2-dichlorobenzene, 200 °C (µ-waves), 20 min; then NaBH4 (20 equiv), MeOH, 1 h, 25 °C, 91% for the two steps; (h) BOMCl (10 equiv), i-Pr2NEt (20 equiv), n-Bu4NI (1.0 equiv), CH2Cl2, 50 °C 12 h; (i) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 78% for the two steps; (j) TBSCl (7.0 equiv), DBU (14 equiv), CH2Cl2, 25 °C, 12 h; (k) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 95% for the two steps.
Scheme 9
Scheme 9
Construction of Enantiopure Hydroxy Acetate (−)-50a aReagents and conditions: (a) POCl3 (2.2 equiv), py, 90 °C, 2 h, 97%; (b) BH3•THF (2.5 equiv), cyclohexene (2.5 equiv), −40 → 0 °C, 2 h; then 29, −40 → 25 °C, 12 h; then 50 °C, 30 min; then 30% H2O2/aq. 3 N NaOH (1:1 v/v), 25 → 50 °C, 12 h, 51%; (c) Ac2O (3.0 equiv), 4-DMAP (0.02 equiv), py, 25 °C, 3 h, quant.; (d) Lipase Amano PS (100 wt%), acetone:phosphate buffer pH = 7 (2:1), 25 °C, 48 h, quant., 99% ee; (e) (S)-MPT-Cl (1.2 equiv), py, 25 °C, 18 h, 91%.
Scheme 10
Scheme 10
Construction of Hydroxy Olefin (+)-56 and X-ray Derived ORTEP of Carbamate (−)-57a aReagents and conditions: (a) TBDPSCl (1.2 equiv), imidazole (3.0 equiv), CH2Cl2, 25 °C, 12 h, 93%; (b) DIBAL-H (1.0 M in hexanes, 2.5 equiv), CH2Cl2, −78 °C, 30 min, 98%; (c) (S)-MTP-Cl (1.5 equiv), py, 25 °C, 18 h, 83%; (d) Martin’s sulfurane (1.3 equiv), Et3N (3.0 equiv), CH2Cl2, 25 °C, 12 h, 91%; (e) NMO (1.5 equiv), TPAP (0.03 equiv), CH2Cl2:MeCN (9:1), 25 °C, 12 h, 96%; (f) KHMDS (0.5 M in toluene, 1.5 equiv), PhNTf2 (1.25 equiv), THF, −78 → −40 °C, 30 min; (g) Et3SiH (2.5 equiv), Pd(Ph3P)4 (0.02 equiv), DMF, 50 °C, 3 h, 95% for the two steps; (h) NIS (1.5 equiv), THF:H2O (4:1), 0 → 25 °C, 1.5 h; then K2CO3 (2.5 equiv), MeOH, 25 °C, 18 h, 91%; (i) 2-bromopropene (4.5 equiv), t-BuLi (1.7 M in pentane, 8.0 equiv), THF, −78 °C, 5 min; then BF3•Et2O (2.0 equiv), 2 min; (+)-55, −78 → −20 °C, 30 min, 83%; (j) p-BrC6H4NCO (4.0 equiv), Et3N (6.0 equiv), 25 °C; (k) TBAF (8.0 equiv), THF, 25 °C, 12 h, 74% for the two steps.
Scheme 11
Scheme 11
Mechanistic Rationale for the Stereoselective Epoxidation of Olefin (−)-54 Through Iodohydrin Formation
Scheme 12
Scheme 12
Construction of Vinyl Iodide (−)-26a aReagents and conditions: (a) p-NO2C6H4CO2H (1.5 equiv), DEAD (1.5 equiv), Ph3P (1.8 equiv), benzene, 0 → 25 °C, 18 h, 94%; (b) DIBAL-H (1.0 M in hexanes, 2.5 equiv), CH2Cl2, −78 °C, 30 min, 96%; (c) BOMCl (3.0 equiv), i-Pr2NEt (10 equiv), toluene, 90 °C, 12 h; (d) TBAF (1.0 M in THF, 10 equiv), 70 °C, 8 h, 97% over the two steps; (e) NMO (1.5 equiv), TPAP (0.03 equiv), CH2Cl2:MeCN (9:1), 12 h, 96%; (f) TrisNHNH2 (1.5 equiv), Na2SO4 (100 wt%), THF, 4 h, 90%; (g) n-BuLi (2.5 M in hexanes, 2.1 equiv), THF, −78 → −25 °C, 20 min; then I2 (2.0 equiv), −78 → −25 °C, 20 min, 90%; (h) KHMDS (0.5 M in toluene, 1.5 equiv), PhNTf2 (1.5 equiv), THF, −78 → − 40 °C, 30 min, 94%; (i) Me3SnSnMe3 (2.0 equiv), LiCl (10 equiv), PdCl2(dppf)2 (0.1 equiv), dioxane, 60 °C, 12 h; (j) NIS (1.5 equiv), THF, −50 °C, 50% for the two steps.
Scheme 13
Scheme 13
Coupling of Vinyl Iodide (−)-26 with Aldehydes (+)-27 and (±)-27 and Preparation of γ-Lactones (−)-71 and (+)-72a aReagents and conditions: (a) (−)-26 (1.3 equiv), t-BuLi (2.6 equiv), THF, −78 → −40 °C, 30 min; then (+)-27 or (±)-27 (1.0 equiv), −40 → 0 °C, 20 min, (−)-69: 80% or (−)-69: 40%; (+)-70: 40%; (b) TBAF (1.0 M in THF, 4.0 equiv), THF, 25 °C, 5 h, (−)-24: 86%; (+)-25: 97%; (c) PhI(OAc)2 (5.0 equiv), TEMPO (0.5 equiv), CH2Cl2, 25 °C, 48 h, (−)-71: 80%; (+)-72: 80%.
Scheme 14
Scheme 14
Synthesis of Aldehyde Carbonate (−)-73 and Initial SmI2-Mediated Cyclization Resultsa aReagents and conditions: (a) TESC1 (2.0 equiv), imidazole (5.0 equiv), CH2C12, 25 °C, 0.5 h, 97%; (b) KHMDS (0.5 M in toluene, 2.5 equiv), ClCO2Me (4.0 equiv), Et3N (4.0 equiv), THF, −78 → 25 °C, 1 h; (c) HF•py:py (1:4), 0 → 25 °C, 12 h, 78% for the two steps; (d) PhI(OAc)2 (5.0 equiv), TEMPO (1.0 equiv), CH2C12, 25 °C, 24 h, 98%; (e) Sml2 (0.1 M in THF, 5.0 equiv), HMPA (15 equiv), THF, −10 → 25 °C, 30 min, ca. 20%.
Scheme 15
Scheme 15
Preparation of Crystalline p-Bromophenyl Carbamate (−)-81 and Its X-ray Derived ORTEPa aReagents and conditions: (a) DEAD (10 equiv), Ph3P (10 equiv), p-NO2C6H4CO2H (10 equiv), benzene, 70 °C, 2 h, 88% based on recovered starting material (40%); (b) LiDBB, THF, −78 → −50 °C; 0.5 h, 90%; (c) HF•py:THF, 25 °C, 4 h, 93%; (d) p-BrC6H4NCO (10 equiv), py, 40 °C, 12 h, 84%.
Scheme 16
Scheme 16
Synthesis of Aldehyde (±)-86a aReagents and conditions: (a) Ac2O (30 equiv), 4-DMAP (0.1 equiv), Et3N (40 equiv), CH2Cl2, 25 °C, 18 h, 79%; (b) 2-methoxypropene (20 equiv), CSA (1.0 equiv), CH2Cl2, −78 → −30 °C, 3 h, 82%; (c) MeMgBr (50 equiv), toluene, 50 °C, 8 h, 94%; (d) SEMCl (10 equiv), i-Pr2NEt (30 equiv), n-Bu4NI (1.0 equiv), CH2Cl2, 50 °C, 48 h, 96%; (e) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 96%; (f) KH (10 equiv), allyl chloride (20 equiv), HMPA (5.0 equiv), DME, −10 → 25 °C, 3 h, 92%; (g) i-Pr2NEt (1.0 equiv), 1,2-dichlorobenzene, 200 °C (µ-waves), 20 min; then NaBH4 (20 equiv), MeOH, 1 h, 25 °C, 88% for the two steps; (h) BOMCl (6.0 equiv), i-Pr2NEt (15 equiv), CH2Cl2, 50 °C, 12 h; (i) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 85% for the two steps; (j) TBSCl (10 equiv), DBU (20 equiv), CH2Cl2, 25 °C, 36 h; (k) O3, py (1.0 equiv), CH2Cl2:MeOH (1:1), −78 °C; then Ph3P (5.0 equiv), −78 → 25 °C, 1 h, 97% for the two steps.
Scheme 17
Scheme 17
Coupling of Vinyl Iodide (−)-26 and Aldehyde (±)-86 and Synthesis of Polycyclic Hydroxy Olefins (−)-90 and (+)-91a aReagents and conditions: (a) (−)-26 (1.3 equiv), t-BuLi (2.6 equiv), THF, −78 → −40 °C, 30 min; then (±)-86 (1.0 equiv), − 40 → 0 °C, 20 min, 80%; (b) TBAF (1.0 M in THF, 5.0 equiv), THF, 25 °C, 1 h, 98%; (c) TESCl (1.5 equiv), imidazole (5.0 equiv), CH2Cl2, 25 °C, 1 h, 99%; (d) KHMDS (0.5 M in toluene, 3.0 equiv), ClCO2Me (5.0 equiv), Et3N (5.0 equiv), THF, −78 → 25 °C, 2 h; (e) HF•py:py (1:4), 0 → 25 °C, 12 h, 88% for the two steps; (f) PhI(OAc)2 (3.0 equiv), TEMPO (1.0 equiv), CH2Cl2, 25 °C, 24 h, 98%; (g) SmI2 (0.1 M in THF, 5.0 equiv), HMPA (15 equiv), THF, −10 → 25 °C, 30 min, 80% [(−)-90: 28%; (+)-91: 52%].
Scheme 18
Scheme 18
Total Synthesis of the Originally Assigned Structure of Vannusal B (2) aReagents and conditions: (a) POCl3 (60 equiv), py, 60 °C, 3 h, 81%; (b) CS2 (8.0 equiv), NaH (6.0 equiv), THF, 0 → 25 °C, 30 min; then MeI (12 equiv), 0 → 25 °C, 3 h; then 185 °C (µ-waves), 1,2-dichlorobenzene, 15 min, 92%; (c) ThexBH2 (5.0 equiv), THF, −10 → 25 °C, 1 h; then BH3•THF (15 equiv), 0 → 25 °C, 30 min; then 30% H2O2/3 N aq. NaOH (1:1), 25 → 40 °C, 1 h; 65% overall yield (ca. 1:1.3 dr); (d) o-NO2C6H4SeCN (2.0 equiv), n-Bu3P (6.0 equiv), py (12 equiv), THF, 25 °C, 10 min; then 30% H2O2, 0 → 25 °C, 12 h, 67%; (e) Ac2O (20 equiv), Et3N (20 equiv), 4-DMAP (1.0 equiv), CH2Cl2, 24 h, 96%; (f) KHMDS (0.5 M in toluene, 5.0 equiv), TESCl (5.0 equiv), Et3N (8.0 equiv), THF, −78 → 25 °C, 30 min, 94%; (g) LiDBB (excess), THF, −78 → −50 °C, 30 min, 84%; (h) PhI(OAc)2 (3.0 equiv), TEMPO (1.0 equiv), CH2Cl2, 25 °C, 24 h, 88%; (i) Ac2O (30 equiv), Et3N (30 equiv), 4-DMAP (1.0 equiv), CH2Cl2, 25 °C, 12 h, quant.; (j) HF•py:THF (1:4), 25 °C, 3 h; then 3 N aq. HCl:THF (1:3), 25 °C, 6 h, 80%.
Scheme 19
Scheme 19
Total Synthesis of Vannusal B Structure (+)-d-2a aReagents and conditions: (a) TESCl (2.0 equiv), imidazole (6.0 equiv), CH2Cl2, 25 °C, 30 min, quant.; (b) KHMDS (0.5 M in toluene, 2.5 equiv), ClCO2Me (4.0 equiv), Et3N (4.0 equiv), THF, −78 → 25 °C, 2 h; (c) HF•py:py (1:4), 0 → 25 °C, 12 h, 77% for the two steps; (d) PhI(OAc)2 (5.0 equiv), TEMPO (1.0 equiv), CH2Cl2, 25 °C, 24 h, 98%; (e) SmI2 (0.1 M in THF, 5.0 equiv), HMPA (15 equiv), THF, −10 → 25 °C, 30 min, 73%; (f) TESCl (2.0 equiv), imidazole (6.0 equiv), CH2Cl2, 5 h; (g) LiDBB (excess), THF, −78 → −50 °C, 30 min, 92% for the two steps; (h) PhI(OAc)2 (5.0 equiv), TEMPO (2.0 equiv), CH2Cl2, 25 °C, 36 h, 89%; (i) Ac2O (20 equiv), Et3N (30 equiv), 4-DMAP (2.0 equiv), CH2Cl2, 25 °C, 12 h, 99%; (j) HF•py:THF (1:4), 25 °C, 0.5 h, 89%; (k) 3 N aq. HCl:THF (1:3), 25 °C, 12 h, 92%.

Similar articles

Cited by

References

    1. Guella G, Dini F, Pietra F. Angew. Chem., Int. Ed. 1999;38:1134–1136. - PubMed
    1. Guella G, Callone E, Di Giuseppe G, Frassanito R, Frontini FP, Mancini I, Dini F. Eur. J. Org. Chem. 2007:5226–5234.
    1. Nicolaou KC, Zhang H, Ortiz A, Dagneau P. Angew. Chem., Int. Ed. 2008;47:8605–8610. - PMC - PubMed
    1. Nicolaou KC, Zhang H, Ortiz A. Angew. Chem., Int. Ed. 2009;48:5642–5647. - PMC - PubMed
    1. Nicolaou KC, Ortiz A, Zhang H. Angew. Chem., Int. Ed. 2009;48:5648–5652. - PMC - PubMed

Publication types