Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Sep 1;140(1):1-9.
doi: 10.1111/j.1399-3054.2010.01378.x. Epub 2010 Apr 28.

Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca

Affiliations

Implementing reverse genetics in Rosaceae: analysis of T-DNA flanking sequences of insertional mutant lines in the diploid strawberry, Fragaria vesca

Teruko Oosumi et al. Physiol Plant. .

Abstract

Reverse genetics is used for functional genomics research in model plants. To establish a model system for the systematic reverse genetics research in the Rosaceae family, we analyzed genomic DNA flanking the T-DNA insertions in 191 transgenic plants of the diploid strawberry, Fragaria vesca. One hundred and seventy-six T-DNA flanking sequences were amplified from the right border (RB) and 37 from the left border (LB) by thermal asymmetric interlaced PCR. Analysis of the T-DNA nick positions revealed that T-DNA was most frequently nicked at the cleavage sites. Analysis of 11 T-DNA integration sites indicated that T-DNA was integrated into the F. vesca genome by illegitimate recombination, as reported in other model plants: Arabidopsis, rice and tobacco. First, deletion of DNA was found at T-DNA integration target sites in all transgenic plants tested. Second, microsimilarities of a few base pairs between the left and/or right ends of the T-DNA and genomic sites were found in all transgenic plants tested. Finally, filler DNA was identified in four break-points. Out of 191 transgenic plants, T-DNA flanking sequences of 79 plants (41%) showed significant similarity to genes, elements or proteins of other plant species and 67 (35%) of the sequences are still unknown strawberry gene fragments. T-DNA flanking sequences of 126 plants (66%) showed homology to plant ESTs. This is the first report of T-DNA integration in a sizeable population of a rosaceous species. We have shown in this paper that T-DNA integration in strawberry is not random but directed by sequence microsimilarities in the host genome.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources