Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;40(6):572-9.
doi: 10.1016/j.compbiomed.2010.04.001. Epub 2010 May 4.

Effective fuzzy c-means based kernel function in segmenting medical images

Affiliations

Effective fuzzy c-means based kernel function in segmenting medical images

S R Kannan et al. Comput Biol Med. 2010 Jun.

Abstract

The objective of this paper is to develop an effective robust fuzzy c-means for a segmentation of breast and brain magnetic resonance images. The widely used conventional fuzzy c-means for medical image segmentations has limitations because of its squared-norm distance measure to measure the similarity between centers and data objects of medical images which are corrupted by heavy noise, outliers, and other imaging artifacts. To overcome the limitations this paper develops a novel objective function based standard objective function of fuzzy c-means that incorporates the robust kernel-induced distance for clustering the corrupted dataset of breast and brain medical images. By minimizing the novel objective function this paper obtains effective equation for optimal cluster centers and equation to achieve optimal membership grades for partitioning the given dataset. In order to solve the problems of clustering performance affected by initial centers of clusters, this paper introduces a specialized center initialization method for executing the proposed algorithm in segmenting medical images. Experiments are performed with synthetic, real breast and brain images to assess the performance of the proposed method. Further the validity of clustering results is obtained using silhouette method and this paper compares the results with the results of other recent reported fuzzy c-means methods. The experimental results show the superiority of the proposed clustering results.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources