Binding of imidazole to the heme of cytochrome c1 and inhibition of the bc1 complex from Rhodobacter sphaeroides: II. Kinetics and mechanism of binding
- PMID: 20448037
- PMCID: PMC2903381
- DOI: 10.1074/jbc.M110.128082
Binding of imidazole to the heme of cytochrome c1 and inhibition of the bc1 complex from Rhodobacter sphaeroides: II. Kinetics and mechanism of binding
Abstract
The kinetics of imidazole (Im) and N-methylimidazole (MeIm) binding to oxidized cytochrome (cyt) c(1) of detergent-solubilized bc(1) complex from Rhodobacter sphaeroides are described. The rate of formation of the cyt c(1)-Im complex exhibited three separated regions of dependence on the concentration of imidazole: (i) below 8 mM Im, the rate increased with concentration in a parabolic manner; (ii) above 20 mM, the rate leveled off, indicating a rate-limiting conformational step with lifetime approximately 1 s; and (iii) at Im concentrations above 100 mM, the rate substantially increased again, also parabolically. In contrast, binding of MeIm followed a simple hyperbolic concentration dependence. The temperature dependences of the binding and release kinetics of Im and MeIm were also measured and revealed very large activation parameters for all reactions. The complex concentration dependence of the Im binding rate is not consistent with the popular model for soluble c-type cytochromes in which exogenous ligand binding is preceded by spontaneous opening of the heme cleft, which becomes rate-limiting at high ligand concentrations. Instead, binding of ligand to the heme is explained by a model in which an initial and superficial binding facilitates access to the heme by disruption of hydrogen-bonded structures in the heme domain. For imidazole, two separate pathways of heme access are indicated by the distinct kinetics at low and high concentration. The structural basis for ligand entry to the heme cleft is discussed.
Figures




Similar articles
-
Binding of imidazole to the heme of cytochrome c1 and inhibition of the bc1 complex from Rhodobacter sphaeroides: I. Equilibrium and modeling studies.J Biol Chem. 2010 Jul 16;285(29):22513-21. doi: 10.1074/jbc.M110.128058. Epub 2010 May 6. J Biol Chem. 2010. PMID: 20448035 Free PMC article.
-
Resilience of Rhodobacter sphaeroides cytochrome bc1 to heme c1 ligation changes.Biochemistry. 2006 Dec 5;45(48):14247-55. doi: 10.1021/bi061345i. Biochemistry. 2006. PMID: 17128964
-
Preparation and characterization of the water-soluble heme-binding domain of cytochrome c1 from the Rhodobacter sphaeroides bc1 complex.J Biol Chem. 1991 Aug 5;266(22):14270-6. J Biol Chem. 1991. PMID: 1650353
-
The bc1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus.J Bioenerg Biomembr. 1993 Jun;25(3):195-209. doi: 10.1007/BF00762582. J Bioenerg Biomembr. 1993. PMID: 8394316 Review.
-
Structural basis of multifunctional bovine mitochondrial cytochrome bc1 complex.J Bioenerg Biomembr. 1999 Jun;31(3):191-9. doi: 10.1023/a:1005411510913. J Bioenerg Biomembr. 1999. PMID: 10591525 Review.
Cited by
-
The acidic domain of cytochrome c₁ in paracoccus denitrificans, analogous to the acidic subunits in eukaryotic bc₁ complexes, is not involved in the electron transfer reaction to its native substrate cytochrome c(552).Biochim Biophys Acta. 2011 Nov;1807(11):1383-9. doi: 10.1016/j.bbabio.2011.08.001. Epub 2011 Aug 11. Biochim Biophys Acta. 2011. PMID: 21856278 Free PMC article.
-
Tyrosine triad at the interface between the Rieske iron-sulfur protein, cytochrome c1 and cytochrome c2 in the bc1 complex of Rhodobacter capsulatus.Biochim Biophys Acta. 2012 May;1817(5):811-8. doi: 10.1016/j.bbabio.2012.01.013. Epub 2012 Jan 28. Biochim Biophys Acta. 2012. PMID: 22306765 Free PMC article.
-
Structural Characterization of Neisseria gonorrhoeae Bacterial Peroxidase-Insights into the Catalytic Cycle of Bacterial Peroxidases.Int J Mol Sci. 2023 Mar 26;24(7):6246. doi: 10.3390/ijms24076246. Int J Mol Sci. 2023. PMID: 37047219 Free PMC article.
-
Binding of imidazole to the heme of cytochrome c1 and inhibition of the bc1 complex from Rhodobacter sphaeroides: I. Equilibrium and modeling studies.J Biol Chem. 2010 Jul 16;285(29):22513-21. doi: 10.1074/jbc.M110.128058. Epub 2010 May 6. J Biol Chem. 2010. PMID: 20448035 Free PMC article.
References
-
- Axelrod H. L., Feher G., Allen J. P., Chirino A. J., Day M. W., Hsu B. T., Rees D. C. (1994) Acta Crystallogr. D 50, 596–602 - PubMed
-
- Banci L., Bertini I., Liu G., Lu J., Reddig T., Tang W., Wu Y., Yao Y., Zhu D. (2001) J. Biol. Inorg. Chem. 6, 628–637 - PubMed
-
- Dumortier C., Holt J. M., Meyer T. E., Cusanovich M. A. (1998) J. Biol. Chem. 273, 25647–25653 - PubMed
-
- Dumortier C., Meyer T. E., Cusanovich M. A. (1999) Arch. Biochem. Biophys. 371, 142–148 - PubMed
-
- Yao Y., Qian C., Ye K., Wang J., Bai Z., Tang W. (2002) J. Biol. Inorg. Chem. 7, 539–547 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources