Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;48(2):178-84.
doi: 10.1111/j.1600-079x.2009.00742.x.

Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia

Affiliations

Melatonin suppresses tumor angiogenesis by inhibiting HIF-1alpha stabilization under hypoxia

Shi-Young Park et al. J Pineal Res. 2010 Mar.

Abstract

Angiogenesis is an important mediator of tumor progression. As tumors expand, diffusion distances from the existing vascular supply increases, resulting in hypoxia in the cancer cells. Sustained expansion of a tumor mass requires new blood vessel formation to provide rapidly proliferating tumor cells with an adequate supply of oxygen and nutrients. The key regulator of hypoxia-induced angiogenesis is the transcription factor known as hypoxia-inducible factor (HIF)-1. HIF-1alpha is stabilized by hypoxia-induced reactive oxygen species (ROS) and enhances the expression of several types of hypoxic genes, including that of the angiogenic activator known as vascular endothelial cell growth factor (VEGF). In this study, we found that melatonin, a small lipophilic molecule secreted primarily by the pineal gland, destabilizes hypoxia-induced HIF-1alpha protein levels in the HCT116 human colon cancer cell line. This destabilization of HIF-1alpha resulted from the antioxidant activity of melatonin against ROS induced by hypoxia. Moreover, under hypoxia, melatonin suppressed HIF-1 transcriptional activity, leading to a decrease in VEGF expression. Melatonin also blocked in vitro tube formation and invasion and migration of human umbilical vein endothelial cells induced by hypoxia-stimulated conditioned media of HCT116 cells. These findings suggest that melatonin could play a pivotal role in tumor suppression via inhibition of HIF-1-mediated angiogenesis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources