Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jun;17(6 Pt 2):1045-51.
doi: 10.1161/01.hyp.17.6.1045.

Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor

Affiliations

Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor

J P Tolins et al. Hypertension. 1991 Jun.

Abstract

Ingestion of protein or intravenous infusion of amino acids acutely elevates glomerular filtration rate (GFR) and renal plasma flow (RPF) by unknown mechanisms. Endothelium-derived relaxing factor (EDRF), now known to be nitric oxide derived from metabolism of L-arginine, participates in local regulation of vascular tone. To investigate the hypothesis that EDRF may participate in the renal vasodilatation and increased GFR after amino acid infusion, we characterized the effect of inhibition of EDRF synthesis with NG-monomethyl L-arginine (LNMMA) on basal renal hemodynamics and the response to infusion of a 10% mixed amino acid solution (1 ml/hr i.v.) in the rat. Renal arterial infusion of LNMMA (500 micrograms/kg/min) resulted in a significant increase in mean arterial pressure, decreases in GFR (20%) and RPF (44%), and a significant increase in filtration fraction. Pretreatment with the angiotensin II receptor antagonist Sar-Gly-angiotensin II did not prevent the increase in blood pressure but blunted the decreases in GFR (11%) and RPF (27%) after LNMMA infusion. Amino acid infusion in the untreated, fasted rat resulted in no change in blood pressure but significant increases in GFR and RPF; these effects were completely inhibited by intrarenal LNMMA but not an equihypertensive intravenous infusion of phenylephrine. In summary, EDRF participates in regulation of basal renal hemodynamics. Furthermore, amino acid-induced hyperfiltration and renal vasodilatation are completely prevented by inhibition of EDRF synthesis. We conclude that EDRF may participate in the renal hemodynamic response to amino acid infusion.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources