The macroscopic rate of nucleic acid translocation by hepatitis C virus helicase NS3h is dependent on both sugar and base moieties
- PMID: 20451531
- PMCID: PMC2902667
- DOI: 10.1016/j.jmb.2010.04.065
The macroscopic rate of nucleic acid translocation by hepatitis C virus helicase NS3h is dependent on both sugar and base moieties
Abstract
The nonstructural protein 3 helicase (NS3h) of hepatitis C virus is a 3'-to-5' superfamily 2 RNA and DNA helicase that is essential for the replication of hepatitis C virus. We have examined the kinetic mechanism of the translocation of NS3h along single-stranded nucleic acid with bases uridylate (rU), deoxyuridylate (dU), and deoxythymidylate (dT), and have found that the macroscopic rate of translocation is dependent on both the base moiety and the sugar moiety of the nucleic acid, with approximate macroscopic translocation rates of 3 nt s(-1) (oligo(dT)), 35 nt s(-1) (oligo(dU)), and 42 nt s(-1) (oligo(rU)), respectively. We found a strong correlation between the macroscopic translocation rates and the binding affinity of the translocating NS3h protein for the respective substrates such that weaker affinity corresponded to faster translocation. The values of K(0.5) for NS3h translocation at a saturating ATP concentration are as follows: 3.3+/-0.4 microM nucleotide (poly(dT)), 27+/-2 microM nucleotide (poly(dU)), and 36+/-2 microM nucleotide (poly(rU)). Furthermore, results of the isothermal titration of NS3h with these oligonucleotides suggest that differences in TDeltaS(0) are the principal source of differences in the affinity of NS3h binding to these substrates. Interestingly, despite the differences in macroscopic translocation rates and binding affinities, the ATP coupling stoichiometries for NS3h translocation were identical for all three substrates (approximately 0.5 ATP molecule consumed per nucleotide translocated). This similar periodicity of ATP consumption implies a similar mechanism for NS3h translocation along RNA and DNA substrates.
2010 Elsevier Ltd. All rights reserved.
Figures














Similar articles
-
Investigation of translocation, DNA unwinding, and protein displacement by NS3h, the helicase domain from the hepatitis C virus helicase.Biochemistry. 2010 Mar 16;49(10):2097-109. doi: 10.1021/bi901977k. Biochemistry. 2010. PMID: 20108974 Free PMC article.
-
Single-molecule imaging reveals the translocation and DNA looping dynamics of hepatitis C virus NS3 helicase.Protein Sci. 2017 Jul;26(7):1391-1403. doi: 10.1002/pro.3136. Epub 2017 Mar 6. Protein Sci. 2017. PMID: 28176403 Free PMC article.
-
Hepatitis C Virus Helicase Binding Activity Monitored through Site-Specific Labeling Using an Expanded Genetic Code.ACS Infect Dis. 2019 Dec 13;5(12):2118-2126. doi: 10.1021/acsinfecdis.9b00220. Epub 2019 Nov 7. ACS Infect Dis. 2019. PMID: 31640339
-
Structure and function of hepatitis C virus NS3 helicase.Curr Top Microbiol Immunol. 2000;242:171-96. doi: 10.1007/978-3-642-59605-6_9. Curr Top Microbiol Immunol. 2000. PMID: 10592661 Review.
-
On helicases and other motor proteins.Curr Opin Struct Biol. 2008 Apr;18(2):243-57. doi: 10.1016/j.sbi.2008.01.007. Epub 2008 Mar 10. Curr Opin Struct Biol. 2008. PMID: 18329872 Free PMC article. Review.
Cited by
-
Large-scale functional purification of recombinant HIV-1 capsid.PLoS One. 2013;8(3):e58035. doi: 10.1371/journal.pone.0058035. Epub 2013 Mar 5. PLoS One. 2013. PMID: 23472130 Free PMC article.
-
Unmasking the active helicase conformation of nonstructural protein 3 from hepatitis C virus.J Virol. 2011 May;85(9):4343-53. doi: 10.1128/JVI.02130-10. Epub 2011 Feb 16. J Virol. 2011. PMID: 21325413 Free PMC article.
-
Melting of Duplex DNA in the Absence of ATP by the NS3 Helicase Domain through Specific Interaction with a Single-Strand/Double-Strand Junction.Biochemistry. 2015 Jul 14;54(27):4248-58. doi: 10.1021/acs.biochem.5b00214. Epub 2015 Jul 2. Biochemistry. 2015. PMID: 26091150 Free PMC article.
-
ISWI remodels nucleosomes through a random walk.Biochemistry. 2014 Jul 15;53(27):4346-57. doi: 10.1021/bi500226b. Epub 2014 Jun 30. Biochemistry. 2014. PMID: 24898619 Free PMC article.
-
Computational study of remodeling in a nucleosomal array.Eur Phys J E Soft Matter. 2015 Aug;38(8):85. doi: 10.1140/epje/i2015-15085-4. Epub 2015 Aug 10. Eur Phys J E Soft Matter. 2015. PMID: 26248702
References
-
- LOHMAN TM, BJORNSON KP. MECHANISMS OF HELICASE-CATALYZED DNA UNWINDING. ANNU REV BIOCHEM. 1996;65:169–214. - PubMed
-
- LOHMAN TM, TOMKO EJ, WU CG. NON-HEXAMERIC DNA HELICASES AND TRANSLOCASES: MECHANISMS AND REGULATION. NAT REV MOL CELL BIOL. 2008;9:391–401. - PubMed
-
- PATEL SS, DONMEZ I. MECHANISMS OF HELICASES. J BIOL CHEM. 2006;281:18265–8. - PubMed
-
- PYLE AM. TRANSLOCATION AND UNWINDING MECHANISMS OF RNA AND DNA HELICASES. ANNU REV BIOPHYS. 2008;37:317–36. - PubMed
-
- SINGLETON MR, DILLINGHAM MS, WIGLEY DB. STRUCTURE AND MECHANISM OF HELICASES AND NUCLEIC ACID TRANSLOCASES. ANNU REV BIOCHEM. 2007;76:23–50. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials