Single-nucleotide polymorphisms in the p53 signaling pathway
- PMID: 20452958
- PMCID: PMC2857176
- DOI: 10.1101/cshperspect.a001032
Single-nucleotide polymorphisms in the p53 signaling pathway
Abstract
The p53 tumor suppressor pathway is central both in reducing cancer frequency in vertebrates and in mediating the response of commonly used cancer therapies. This article aims to summarize and discuss a large body of evidence suggesting that the p53 pathway harbors functional inherited single-nucleotide polymorphisms (SNPs) that affect p53 signaling in cells, resulting in differences in cancer risk and clinical outcome in humans. The insights gained through these studies into how the functional p53 pathway SNPs could help in the tailoring of cancer therapies to the individual are discussed. Moreover, recent work is discussed that suggests that many more functional p53 pathway SNPs are yet to be fully characterized and that a thorough analysis of the functional human genetics of this important tumor suppressor pathway is required.
Figures
References
-
- Alhopuro P, Ylisaukko-Oja SK, Koskinen WJ, Bono P, Arola J, Jarvinen HJ, Mecklin JP, Atula T, Kontio R, Makitie AA, et al. 2005. The MDM2 promoter polymorphism SNP309T–>G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. J Med Gen 42:694–698 - PMC - PubMed
-
- Arva NC, Gopen TR, Talbott KE, Campbell LE, Chicas A, White DE, Bond GL, Levine AJ, Bargonetti J 2005. A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in mdm2 SNP309 homozygous cells. J Biol Chem 280:26776–26787 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous