Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;2(4):224-30.
doi: 10.18632/aging.100136.

How to track cellular aging of mesenchymal stromal cells?

Affiliations

How to track cellular aging of mesenchymal stromal cells?

Wolfgang Wagner et al. Aging (Albany NY). 2010 Apr.

Abstract

Mesenchymal stromal cells (MSC) are currently tested in a large number of clinical trials and raise high hope in regenerative medicine. These cells have to be expanded in vitro before transplantation and several studies demonstrated that long-term culture evokes continuous changes in MSC: proliferation rate decays, the cell size increases, differentiation potential is affected, chromosomal instabilities may arise and molecular changes are acquired. Long-term culture of cell preparations might also have therapeutic consequences, although this has hardly been addressed in ongoing trials so far. Reliable therapeutic regimens necessitate quality control of cellular products. This research perspective summarizes available methods to track cellular aging of MSC. We have demonstrated that gene expression changes and epigenetic modifications are continuously acquired during replicative senescence. Molecular analysis of a suitable panel of genes might provide a robust tool to assess efficiency and safety of long-term expansion.

PubMed Disclaimer

Conflict of interest statement

The authors of this manuscript have no conflict of interest to declare.

Figures

Figure 1.
Figure 1.. Continuous gene-expression changes in MSC upon long-term culture.
MSC from human bone marrow were expanded for 11 passages and analyzed by Affymetrix GeneChip technology. Differential gene expression was always determined versus P2. Hierarchical cluster analysis of all expressed genes (19,448 ESTs) revealed continuous changes with higher passages. Hence, molecular changes in replicative senescence do not suddenly occur in late passages, but are acquired in the course of long?term culture.
Figure 2.
Figure 2.. Gene expression markers for replicative senescence.
MSC from human bone marrow were either culture expanded as described before in medium-M1 with 2% fetal calf serum (M1, in Heidelberg, Germany [1]; n=3), in culture medium with 10% fetal calf serum (FCS, n=2) or 10% pooled human platelet lysate (pHPL, n=2; both in Graz, Austria [38]), in MEM supplemented with 20% FCS (Innsbruck, Austria [40]; n=2), and in MSCGM (Lonza) culture medium (Rostock, Germany; n=4). Furthermore, MSC from adipose tissue were expanded with 10% pHPL (Aachen, Germany, n=4). RNA was isolated from corresponding early and late passages and analyzed for differential gene expression in PARG1, CDKN2B, MCM3, PTN and p16ink4a. Primers and methods have been described before [38]. These genes did not facilitate reliable discrimination of senescent cells in all samples but the tendency was consistent in all different MSC preparations.

Similar articles

Cited by

References

    1. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD. Replicative Senescence of Mesenchymal Stem Cells - a Continuous and Organized Process. PLoS ONE. 2008;5:e2213. - PMC - PubMed
    1. Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W. DNA Methylation Pattern Changes upon Long-Term Culture and Aging of Human Mesenchymal Stromal Cells. Aging Cell. 2010;9:54–63. - PMC - PubMed
    1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. - PubMed
    1. Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application. Vox Sang. 2010;98:93–107. - PubMed
    1. Wagner W, Ho AD. Mesenchymal stem cell preparations-comparing apples and oranges. Stem Cell Rev. 2007;3:239–248. - PubMed

Publication types