Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study
- PMID: 20453293
- DOI: 10.1088/0967-3334/31/6/004
Non-invasive classification of severe sepsis and systemic inflammatory response syndrome using a nonlinear support vector machine: a preliminary study
Abstract
Sepsis has been defined as the systemic response to infection in critically ill patients, with severe sepsis and septic shock representing increasingly severe stages of the same disease. Based on the non-invasive cardiovascular spectrum analysis, this paper presents a pilot study on the potential use of the nonlinear support vector machine (SVM) in the classification of the sepsis continuum into severe sepsis and systemic inflammatory response syndrome (SIRS) groups. 28 consecutive eligible patients attending the emergency department with presumptive diagnoses of sepsis syndrome have participated in this study. Through principal component analysis (PCA), the first three principal components were used to construct the SVM feature space. The SVM classifier with a fourth-order polynomial kernel was found to have a better overall performance compared with the other SVM classifiers, showing the following classification results: sensitivity = 94.44%, specificity = 62.50%, positive predictive value = 85.00%, negative predictive value = 83.33% and accuracy = 84.62%. Our classification results suggested that the combinatory use of cardiovascular spectrum analysis and the proposed SVM classification of autonomic neural activity is a potentially useful clinical tool to classify the sepsis continuum into two distinct pathological groups of varying sepsis severity.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical