Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;85(5):295-300.
doi: 10.1159/000276981. Epub 2010 May 5.

The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia

Affiliations

The roles of T-type calcium channel in the development of neuropathic pain following chronic compression of rat dorsal root ganglia

Xian-Jie Wen et al. Pharmacology. 2010.

Abstract

This study aimed to elucidate the role of T-type calcium channels in the nociceptive signal transmission at the spinal level. The chronic compression of dorsal root ganglion (CCD) rat model was adopted. Three doses (50, 100 and 200 microg in groups Mib50, Mib100 and Mib200, respectively) of specific T-type Ca2+ channel inhibitors mibefradil (Mib) or normal saline (NS) were intrathecally administered on the 5th day after the CCD model had been established. The paw withdrawal latency from a noxious thermal stimulus and paw withdrawal mechanical threshold of von Frey filament was used to measure the thermal hyperalgesia and tactile allodynia, respectively. Lumbar spinal cords of the rats isolated on the 5th day after the operation were prepared to measure the mRNA expression of T-type (Cav3.1, Cav3.2 and Cav3.3) calcium channel with RT-PCR methods. The results demonstrated that CCD rats produced reliable thermal hyperalgesia and tactile allodynia after surgery. The intrathecal administration of Mib significantly suppressed thermal hyperalgesia and allodynia in CCD rats (p< 0.01), and the inhibitory effect lasted for 2 h. However, only Cav3.2 and Cav3.3 T-type calcium channel mRNA were detected in the lumbar spinal cord of rats, and there were no Cav3.1 calcium channels. Compared with native and sham groups, the Cav3.2 and Cav3.3 calcium channel mRNA expression increased significantly (p < 0.05). These data support the view that spinal T-type calcium (Cav3.2 and Cav3.3 but not Cav3.1) channels may play an important role in the pathogenesis of neuropathic pain.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources