Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
- PMID: 20455594
- DOI: 10.1021/nn100740x
Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance
Abstract
We report a facile strategy to synthesize the nanocomposite of Co(3)O(4) nanoparticles anchored on conducting graphene as an advanced anode material for high-performance lithium-ion batteries. The Co(3)O(4) nanoparticles obtained are 10-30 nm in size and homogeneously anchor on graphene sheets as spacers to keep the neighboring sheets separated. This Co(3)O(4)/graphene nanocomposite displays superior Li-battery performance with large reversible capacity, excellent cyclic performance, and good rate capability, highlighting the importance of the anchoring of nanoparticles on graphene sheets for maximum utilization of electrochemically active Co(3)O(4) nanoparticles and graphene for energy storage applications in high-performance lithium-ion batteries.
Similar articles
-
Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.ACS Appl Mater Interfaces. 2010 Dec;2(12):3709-13. doi: 10.1021/am100857h. Epub 2010 Nov 29. ACS Appl Mater Interfaces. 2010. PMID: 21114292
-
In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries.Nanoscale. 2011 Feb;3(2):572-4. doi: 10.1039/c0nr00639d. Epub 2010 Nov 12. Nanoscale. 2011. PMID: 21076732
-
Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.Nanoscale. 2011 Nov;3(11):4752-8. doi: 10.1039/c1nr10879d. Epub 2011 Oct 11. Nanoscale. 2011. PMID: 21989744
-
Nano active materials for lithium-ion batteries.Nanoscale. 2010 Aug;2(8):1294-305. doi: 10.1039/c0nr00068j. Epub 2010 May 18. Nanoscale. 2010. PMID: 20820717 Review.
-
Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes.Nanoscale. 2011 Jan;3(1):45-58. doi: 10.1039/c0nr00472c. Epub 2010 Oct 26. Nanoscale. 2011. PMID: 20978657 Review.
Cited by
-
Rutile TiO2 mesocrystals/reduced graphene oxide with high-rate and long-term performance for lithium-ion batteries.Sci Rep. 2015 Feb 17;5:8498. doi: 10.1038/srep08498. Sci Rep. 2015. PMID: 25688035 Free PMC article.
-
Chitosan-Modified Graphene Electrodes for DNA Mutation Analysis.J Electroanal Chem (Lausanne). 2012 Oct 15;686:69-72. doi: 10.1016/j.jelechem.2012.09.026. J Electroanal Chem (Lausanne). 2012. PMID: 23472058 Free PMC article.
-
Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries.ACS Nano. 2020 Jan 28;14(1):698-707. doi: 10.1021/acsnano.9b07473. Epub 2019 Dec 19. ACS Nano. 2020. PMID: 31834775 Free PMC article.
-
Biosafety and Antibacterial Ability of Graphene and Graphene Oxide In Vitro and In Vivo.Nanoscale Res Lett. 2017 Oct 12;12(1):564. doi: 10.1186/s11671-017-2317-0. Nanoscale Res Lett. 2017. PMID: 29027140 Free PMC article.
-
A Review of Conductive Hydrogel Used in Flexible Strain Sensor.Materials (Basel). 2020 Sep 7;13(18):3947. doi: 10.3390/ma13183947. Materials (Basel). 2020. PMID: 32906652 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources