Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage
- PMID: 20456936
- DOI: 10.1016/j.copbio.2010.03.017
Calcifying cyanobacteria--the potential of biomineralization for carbon capture and storage
Abstract
Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.
Published by Elsevier Ltd.
Similar articles
-
On carbon dioxide storage based on biomineralization strategies.Micron. 2010 Jun;41(4):273-82. doi: 10.1016/j.micron.2009.11.012. Epub 2009 Dec 14. Micron. 2010. PMID: 20144548 Review.
-
Biomimetic and microbial approaches to solar fuel generation.Acc Chem Res. 2009 Dec 21;42(12):1899-909. doi: 10.1021/ar900127h. Acc Chem Res. 2009. PMID: 19757805
-
Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans.Science. 2001 Jun 1;292(5522):1701-4. doi: 10.1126/science.1057204. Science. 2001. PMID: 11387471
-
Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants.J Exp Bot. 2008;59(7):1441-61. doi: 10.1093/jxb/erm112. Epub 2007 Jun 19. J Exp Bot. 2008. PMID: 17578868 Review.
-
The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism.J Exp Bot. 2006;57(2):249-65. doi: 10.1093/jxb/eri286. Epub 2005 Oct 10. J Exp Bot. 2006. PMID: 16216846 Review.
Cited by
-
Dual carbon sequestration with photosynthetic living materials.bioRxiv [Preprint]. 2023 Dec 23:2023.12.22.572991. doi: 10.1101/2023.12.22.572991. bioRxiv. 2023. Update in: Nat Commun. 2025 Apr 23;16(1):3832. doi: 10.1038/s41467-025-58761-y. PMID: 38187760 Free PMC article. Updated. Preprint.
-
Experimental validation of a nonequilibrium model of CO₂ fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor.J Ind Microbiol Biotechnol. 2010 Dec;37(12):1319-26. doi: 10.1007/s10295-010-0876-5. Epub 2010 Nov 18. J Ind Microbiol Biotechnol. 2010. PMID: 21086107
-
Advances in the function and regulation of hydrogenase in the cyanobacterium Synechocystis PCC6803.Int J Mol Sci. 2014 Oct 31;15(11):19938-51. doi: 10.3390/ijms151119938. Int J Mol Sci. 2014. PMID: 25365180 Free PMC article. Review.
-
Association of Acidotolerant Cyanobacteria to Microbial Mats below pH 1 in Acidic Mineral Precipitates in Río Tinto River in Spain.Microorganisms. 2024 Apr 19;12(4):829. doi: 10.3390/microorganisms12040829. Microorganisms. 2024. PMID: 38674771 Free PMC article.
-
Towards the microbial home: An overview of developments in next-generation sustainable architecture.Microb Biotechnol. 2023 Jun;16(6):1112-1130. doi: 10.1111/1751-7915.14256. Epub 2023 Apr 18. Microb Biotechnol. 2023. PMID: 37070748 Free PMC article.