HIV with contact tracing: a case study in approximate Bayesian computation
- PMID: 20457785
- DOI: 10.1093/biostatistics/kxq022
HIV with contact tracing: a case study in approximate Bayesian computation
Abstract
Missing data is a recurrent issue in epidemiology where the infection process may be partially observed. Approximate Bayesian computation (ABC), an alternative to data imputation methods such as Markov chain Monte Carlo (MCMC) integration, is proposed for making inference in epidemiological models. It is a likelihood-free method that relies exclusively on numerical simulations. ABC consists in computing a distance between simulated and observed summary statistics and weighting the simulations according to this distance. We propose an original extension of ABC to path-valued summary statistics, corresponding to the cumulated number of detections as a function of time. For a standard compartmental model with Suceptible, Infectious and Recovered individuals (SIR), we show that the posterior distributions obtained with ABC and MCMC are similar. In a refined SIR model well suited to the HIV contact-tracing data in Cuba, we perform a comparison between ABC with full and binned detection times. For the Cuban data, we evaluate the efficiency of the detection system and predict the evolution of the HIV-AIDS disease. In particular, the percentage of undetected infectious individuals is found to be of the order of 40%.
Similar articles
-
ABC: a useful Bayesian tool for the analysis of population data.Infect Genet Evol. 2010 Aug;10(6):826-33. doi: 10.1016/j.meegid.2009.10.010. Epub 2009 Oct 30. Infect Genet Evol. 2010. PMID: 19879976
-
A stochastic SIR model with contact-tracing: large population limits and statistical inference.J Biol Dyn. 2008 Oct;2(4):392-414. doi: 10.1080/17513750801993266. J Biol Dyn. 2008. PMID: 22876905
-
Approximate Bayesian computation (ABC) gives exact results under the assumption of model error.Stat Appl Genet Mol Biol. 2013 May 6;12(2):129-41. doi: 10.1515/sagmb-2013-0010. Stat Appl Genet Mol Biol. 2013. PMID: 23652634
-
Statistical inference for stochastic simulation models--theory and application.Ecol Lett. 2011 Aug;14(8):816-27. doi: 10.1111/j.1461-0248.2011.01640.x. Epub 2011 Jun 17. Ecol Lett. 2011. PMID: 21679289 Review.
-
Bayesian inference.Methods Mol Biol. 2013;930:597-636. doi: 10.1007/978-1-62703-059-5_25. Methods Mol Biol. 2013. PMID: 23086859 Review.
Cited by
-
A general stochastic model for sporophytic self-incompatibility.J Math Biol. 2012 Jan;64(1-2):163-210. doi: 10.1007/s00285-011-0410-z. Epub 2011 Feb 26. J Math Biol. 2012. PMID: 21359544
-
Kernel-density estimation and approximate Bayesian computation for flexible epidemiological model fitting in Python.Epidemics. 2018 Dec;25:80-88. doi: 10.1016/j.epidem.2018.05.009. Epub 2018 May 26. Epidemics. 2018. PMID: 29884470 Free PMC article.
-
Inference with selection, varying population size, and evolving population structure: application of ABC to a forward-backward coalescent process with interactions.Heredity (Edinb). 2021 Feb;126(2):335-350. doi: 10.1038/s41437-020-00381-x. Epub 2020 Oct 30. Heredity (Edinb). 2021. PMID: 33128035 Free PMC article.
-
Parameter estimation for contact tracing in graph-based models.J R Soc Interface. 2023 Nov;20(208):20230409. doi: 10.1098/rsif.2023.0409. Epub 2023 Nov 22. J R Soc Interface. 2023. PMID: 37989228 Free PMC article.
-
Contact tracing - Old models and new challenges.Infect Dis Model. 2020 Dec 30;6:222-231. doi: 10.1016/j.idm.2020.12.005. eCollection 2021. Infect Dis Model. 2020. PMID: 33506153 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical