Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;11(4):644-60.
doi: 10.1093/biostatistics/kxq022. Epub 2010 May 10.

HIV with contact tracing: a case study in approximate Bayesian computation

Affiliations

HIV with contact tracing: a case study in approximate Bayesian computation

Michael G B Blum et al. Biostatistics. 2010 Oct.

Abstract

Missing data is a recurrent issue in epidemiology where the infection process may be partially observed. Approximate Bayesian computation (ABC), an alternative to data imputation methods such as Markov chain Monte Carlo (MCMC) integration, is proposed for making inference in epidemiological models. It is a likelihood-free method that relies exclusively on numerical simulations. ABC consists in computing a distance between simulated and observed summary statistics and weighting the simulations according to this distance. We propose an original extension of ABC to path-valued summary statistics, corresponding to the cumulated number of detections as a function of time. For a standard compartmental model with Suceptible, Infectious and Recovered individuals (SIR), we show that the posterior distributions obtained with ABC and MCMC are similar. In a refined SIR model well suited to the HIV contact-tracing data in Cuba, we perform a comparison between ABC with full and binned detection times. For the Cuban data, we evaluate the efficiency of the detection system and predict the evolution of the HIV-AIDS disease. In particular, the percentage of undetected infectious individuals is found to be of the order of 40%.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources