Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 May 18;107(20):9029-30.
doi: 10.1073/pnas.1004510107. Epub 2010 May 10.

Chromatic adaptation and the evolution of light color sensing in cyanobacteria

Affiliations
Review

Chromatic adaptation and the evolution of light color sensing in cyanobacteria

David M Kehoe. Proc Natl Acad Sci U S A. .
No abstract available

PubMed Disclaimer

Conflict of interest statement

The author declares no conflict of interest.

Figures

Fig. 1.
Fig. 1.
Phycobiliproteins, bilin variation, and group III CA regulation. (A) Phycocyanin and phycoerythrin (blue and red lines, and in vials) absorb in regions of the visible spectrum not well absorbed by chlorophyll or carotenoids. Attached bilins: PEB, phycoerythrobilin; PCB, phycocyanobilin. (B) Natural diversity in coloration of many different cyanobacterial species due to variation in their bilin content [photograph by Christophe Six. Reproduced with permission from Six et al. (2007) (Copyright 2010, Biomed Central Ltd.)]. (C) Group III CA regulation model for F. diplosiphon in red light, showing the asymmetric regulation of red-light active genes (orange) and green-light active genes (yellow) by the Rca and Cgi systems. Dashed line represents proposed repression by the Cgi system; yellow balls, phosphoryl groups; blue boxes, RcaC binding sites.

Comment on

Similar articles

Cited by

References

    1. Karniol B, Wagner JR, Walker JM, Vierstra RD. Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J. 2005;392:103–116. - PMC - PubMed
    1. Hirose Y, Narikawa R, Katayama M, Ikeuchi M. Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proc Natl Acad Sci USA. 2010;107:8854–8859. - PMC - PubMed
    1. Kendrick RE, Kronenberg GHM. Photomorphogenesis in Plants. 2nd Ed. Dordrecht, The Netherlands: Kluwer; 1994.
    1. Kaneko T, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996;3:109–136. - PubMed
    1. Kehoe DM, Grossman AR. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science. 1996;273:1409–1412. - PubMed

Publication types

LinkOut - more resources