Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;67(5):596-605.
doi: 10.1001/archneurol.2010.78.

Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants

Affiliations

Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants

Keith A Josephs et al. Arch Neurol. 2010 May.

Abstract

Objectives: To determine patterns of hypometabolism on fluorodeoxyglucose F18 positron emission tomography (FDG-PET) in patients with progressive apraxia of speech (PAS) and primary progressive aphasia (PPA) variants and to use these patterns to further refine current classification.

Design: We identified all patients who had FDG-PET and PAS or PPA who were evaluated by an expert speech-language pathologist. Patterns of hypometabolism were independently classified by 2 raters blinded to clinical data. Three speech-language pathologists reclassified all patients into 1 of 7 operationally defined categories of PAS and PPA blinded to FDG-PET data.

Setting: Tertiary care medical center.

Patients: Twenty-four patients with PAS or PPA and FDG-PET.

Main outcome measure: Fluorodeoxyglucose F18 PET hypometabolic pattern.

Results: Of the 24 patients in the study, 9 had nonfluent speech output; 14, fluent speech; and 1 was unclassifiable. Twenty-one patients showed FDG hypometabolism; the remaining 3 did not. Among the patients showing hypometabolism, 8 had a prerolandic pattern of which 7 had nonfluent speech including progressive nonfluent aphasia (n = 3), PAS (n = 1), and mixed nonfluent aphasia/apraxia of speech (n = 3); the other patient had PPA unclassifiable. The remaining 13 had a postrolandic pattern, all with fluent speech (P < .001), including logopenic progressive aphasia (n = 6), progressive fluent aphasia (n = 6), and semantic dementia (n = 1). Patterns of hypometabolism differed between the nonfluent variants and between the fluent variants, including progressive fluent aphasia.

Conclusion: Patterns of FDG-PET hypometabolism support the clinical categorizations of fluency, the distinction of apraxia of speech from progressive nonfluent aphasia, and the designation of a progressive fluent aphasia category.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources