The detailed localization pattern of Na+/K+/2Cl- cotransporter type 2 and its related ion transport system in the rat endolymphatic sac
- PMID: 20458062
- PMCID: PMC2907281
- DOI: 10.1369/jhc.2010.956045
The detailed localization pattern of Na+/K+/2Cl- cotransporter type 2 and its related ion transport system in the rat endolymphatic sac
Abstract
The endolymphatic sac (ES) is a part of the membranous labyrinth. ES is believed to perform endolymph absorption, which is dependent on several ion transporters, including Na(+)/K(+)/2Cl(-) cotransporter type 2 (NKCC-2) and Na(+)/K(+)-ATPase. NKCC-2 is typically recognized as a kidney-specific ion transporter expressed in the apical membrane of the absorptive epithelium. NKCC-2 expression has been confirmed only in the rat and human ES other than the kidney, but the detailed localization features of NKCC-2 have not been investigated in the ES. Thus, we evaluated the specific site expressing NKCC-2 by immunohistochemical assessment. NKCC-2 expression was most frequently seen in the intermediate portion of the ES, where NKCC-2 is believed to play an important role in endolymph absorption. In addition, NKCC-2 expression was also observed on the apical membranes of ES epithelial cells, and Na(+)/K(+)-ATPase coexpression was observed on the basolateral membranes of ES epithelial cells. These results suggest that NKCC-2 performs an important role in endolymph absorption and that NKCC-2 in apical membranes and Na(+)/K(+)-ATPase in basolateral membranes work coordinately in the ES in a manner similar to that in renal tubules.
Figures
References
-
- Akiyama K, Miyashita T, Mori T, Inamoto R, Mori N (2008) Expression of thiazide-sensitive Na+-Cl− cotransporter in the rat endolymphatic sac. Biochem Biophys Res Commun 371:649–653 - PubMed
-
- Akiyama K, Miyashita T, Mori T, Mori N (2007) Expression of the Na+-K+-2Cl− cotransporter in the rat endolymphatic sac. Biochem Biophys Res Commun 364:913–917 - PubMed
-
- Amano H, Orsulakova A, Morgenstern C (1983) Intracellular and extracellular ion content of the endolymphatic sac. Arch Otorhinolaryngol 237:273–277 - PubMed
-
- Beitz E, Kumagami H, Krippeit-Drews P, Ruppersberg JP, Schultz JE (1999) Expression pattern of aquaporin water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endolymphatic sac. Hear Res 132:76–84 - PubMed
-
- Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–650 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
