Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;21(1):19-28.
doi: 10.1515/revneuro.2010.21.1.19.

CCUG repeats reduce the rate of global protein synthesis in myotonic dystrophy type 2

Affiliations
Review

CCUG repeats reduce the rate of global protein synthesis in myotonic dystrophy type 2

Christiane Schneider-Gold et al. Rev Neurosci. 2010.

Abstract

Expansion of non-coding CTG and CCTG repeats in the 3' UTR of the myotonin protein kinase (DMPK) gene in Myotonic Dystrophy type 1 (DM1) and in the intron 1 of Zinc Finger Protein 9 (ZNF9) in Myotonic Dystrophy type 2 (DM2) represent typical non-coding mutations that cause the diseases mainly through transdominant effect on the RNA metabolism (splicing, translation and RNA stability). The commonly recognized RNA gain-of-function mechanism of DM1 and DM2 suggests that the mutant CUG and CCUG RNAs play a critical role in myotonic dystrophies (DMs) without a significant role of DMPK and ZNF9. Recent studies have shown that the molecular pathogenesis of DM2 also involves the protein product of the ZNF9 gene. CCUG repeats reduce ZNF9 protein, a translational regulator of the terminal oligo-pyrimidine tract (TOP) mRNAs encoding proteins of translational apparatus. Thus, in DM2 cells, expansion of CCUG repeats affects not only multiple RNAs, but also down-regulates ZNF9 which in turn reduces translation of the TOP-containing mRNAs and diminishes the rate of global protein synthesis. In this review, we discuss the role of expansion of CCUG repeats in the reduction of ZNF9-mediated regulation of the rate of protein synthesis in DM2 and the consequences of this reduction in the multi-systemic phenotype of DM2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources