High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography
- PMID: 20459256
- PMCID: PMC2859086
- DOI: 10.1117/1.3369811
High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography
Abstract
We present high-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography (OMAG) technology. Based on spatial frequency analysis, OMAG is capable of visualizing the vascular perfusion map down to capillary-level resolution. An OMAG system operating at 840 nm is used with an A-scan rate of 27,000 Hz, axial resolution of 8 mum, and sensitivity of 98 dB. To achieve wide-field imaging, we capture 16 optical coherence tomography (OCT) 3-D datasets in a sequential order, which together provide an area of approximately 7.4 x 7.4 mm(2) at the posterior segment of the human eye. For each of these datasets, the bulk tissue motion artifacts are eliminated by applying a phase compensation method based on histogram estimation of bulk motion phases, while the displacements occurring between adjacent B-frames are compensated for by 2-D cross correlation between two adjacent OMAG flow images. The depth-resolved capability of OMAG imaging also provides volumetric information on the ocular circulations. Finally, we compare the clinical fluorescein angiography and indocyanine green angiography imaging results with the OMAG results of blood perfusion map within the retina and choroid, and show excellent agreement between these modalities.
Figures










Similar articles
-
In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.Opt Express. 2008 Jul 21;16(15):11438-52. doi: 10.1364/oe.16.011438. Opt Express. 2008. PMID: 18648464
-
Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.Opt Lett. 2010 May 1;35(9):1467-9. doi: 10.1364/OL.35.001467. Opt Lett. 2010. PMID: 20436605 Free PMC article.
-
Evaluating changes of blood flow in retina, choroid, and outer choroid in rats in response to elevated intraocular pressure by 1300 nm swept-source OCT.Microvasc Res. 2019 Jan;121:37-45. doi: 10.1016/j.mvr.2018.09.003. Epub 2018 Sep 26. Microvasc Res. 2019. PMID: 30267716 Free PMC article.
-
ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects.Dev Ophthalmol. 2016;56:18-29. doi: 10.1159/000442773. Epub 2016 Mar 15. Dev Ophthalmol. 2016. PMID: 27023249 Review.
-
Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects.Dev Ophthalmol. 2016;56:1-5. doi: 10.1159/000442768. Epub 2016 Mar 15. Dev Ophthalmol. 2016. PMID: 27022921 Review.
Cited by
-
Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT.Biomed Opt Express. 2011 Jun 1;2(6):1539-52. doi: 10.1364/BOE.2.001539. Epub 2011 May 13. Biomed Opt Express. 2011. PMID: 21698017 Free PMC article.
-
Optical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration.Ophthalmology. 2016 Jun;123(6):1309-19. doi: 10.1016/j.ophtha.2016.01.044. Epub 2016 Feb 12. Ophthalmology. 2016. PMID: 26876696 Free PMC article.
-
The effect of age on the response of retinal capillary filling to changes in intraocular pressure measured by optical coherence tomography angiography.Microvasc Res. 2018 Jan;115:12-19. doi: 10.1016/j.mvr.2017.08.001. Epub 2017 Aug 3. Microvasc Res. 2018. PMID: 28782513 Free PMC article.
-
Relative retinal flow velocity detection using optical coherence tomography angiography imaging.Biomed Opt Express. 2020 Oct 27;11(11):6710-6720. doi: 10.1364/BOE.408481. eCollection 2020 Nov 1. Biomed Opt Express. 2020. PMID: 33282519 Free PMC article.
-
Quantifying choriocapillaris hypoperfusion in patients with choroidal neovascularization using swept-source OCT angiography.Clin Ophthalmol. 2019 Aug 26;13:1613-1620. doi: 10.2147/OPTH.S204344. eCollection 2019. Clin Ophthalmol. 2019. PMID: 31692580 Free PMC article.
References
-
- Kwiterovich K. A., Maguire M. G., Murphy R. P., Schachat A. P., Bressler N. M., Bressler S. B., and Fine S. L., “Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study,” Ophthalmology OPHTDG 98, 1139–1142 (1991). - PubMed
-
- Hope-Ross M., Yannuzzi L., Gragoudas E., Guyer D., Slakter J., Sorenson J., Krupsky S., Orlock D., and Puliafito C., “Adverse reactions due to indocyanine green,” Ophthalmology OPHTDG 101, 529–533 (1994). - PubMed
-
- Fercher A. F., Drexler W., Hitzenberger C. K., and Lasser T., “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. RPPHAG 66, 239–303 (2003).10.1088/0034-4885/66/2/204 - DOI
-
- Tomlins P. H. and Wang R. K., “Theory, development and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38, 2519–2535 (2005).10.1088/0022-3727/38/15/002 - DOI
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous