Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;9(4):503-15.
doi: 10.1002/jor.1100090406.

Long-term explant culture of rabbit flexor tendon: effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism

Affiliations

Long-term explant culture of rabbit flexor tendon: effects of recombinant human insulin-like growth factor-I and serum on matrix metabolism

S O Abrahamsson et al. J Orthop Res. 1991 Jul.

Abstract

The effects of human recombinant insulin-like growth factor-I (rhIGF-I, 50 ng/ml) on matrix metabolism in the deep flexor tendon from the tendon sheath region of the rabbit were studied in explants cultured for 3 weeks. Tendon segments cultured in medium supplemented with fetal calf serum (FCS) exhibited proliferation of the superficial cell layers. Synthesis of proteoglycan and non-collagen protein (NCP) increased threefold during the first week and remained elevated during the next 2 weeks of culture in medium supplemented with rhIGF-I or FCS, but not in medium without supplements (bovine serum albumin, BSA). The estimated halflife (t1/2) for elimination of newly labeled proteoglycans from the tendon explants ranged from 5.1 to 8.5 days and from 4.9 to 6.8 days for NCP in supplemented medium. Presence of rhIGF-I or FCS did not affect degradation of matrix as compared with BSA. The total hexosamine content per tendon segment was stable during the culture period, but the non-collagen protein content decreased by 25%. Collagen synthesis decreased to 10% of the initial level after 3 weeks in supplemented medium, but to 3% in unsupplemented medium. There was no measurable turnover of collagen in explants cultured in either medium, and the collagen content remained unchanged. Our results suggest that rhIGF-I, as well as FCS, stimulates matrix synthesis but does not influence matrix turnover in rabbit flexor tendon explants in long-term culture as compared with medium without supplements. We conclude that rhIGF-I may be used as a defined growth-promoting factor in serum-free media and may be of importance in tendon healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources