Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;9(4):559-67.
doi: 10.1002/jor.1100090412.

Effects of osteochondral defect size on cartilage contact stress

Affiliations

Effects of osteochondral defect size on cartilage contact stress

T D Brown et al. J Orthop Res. 1991 Jul.

Abstract

Contact stress distributions were studied in vitro for 13 dog knees, with full-thickness osteochondral defects drilled in the weight-bearing area of both femoral condyles. Diameters of the circular defects were concentrically enlarged from 1 to 7 mm. Digitally-imaged Fuji film was used to record cartilage contact stress distribution on femoral condyles for each increment of defect diameter. All specimens showed at least some tendency for contact stress concentration at the rim of the defects. However, detailed distributions had large interspecimen variability and, within a given specimen, contact stress distributions became progressively more nonuniform around the defect rim as the diameter was enlarged. Averaged over the full series of 26 condyles, circumferential mean cartilage contact stress around the defect rim was only moderately higher (by 10-30%) than intact surface's peak local contact stress [series average = 6.2 mega pascals (MPa)]. Maximal rim stress concentration occurred for 2 mm defects, there being a consistent trend toward mild rim stress decrease with further defect enlargement. Such modest contact stress elevations, per se, are probably insufficient to inhibit defect repair or to cause degeneration of surrounding cartilage. However, near the defect rim (for all diameters), the radial component of the gradient of contact stress (i.e., radial-direction variation of contact stress) was consistently elevated by an order of magnitude above that for intact, condyle articular cartilage.

PubMed Disclaimer

Publication types

LinkOut - more resources