Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 12:9:105.
doi: 10.1186/1476-4598-9-105.

Gene-based outcome prediction in multiple cohorts of pediatric T-cell acute lymphoblastic leukemia: a Children's Oncology Group study

Affiliations

Gene-based outcome prediction in multiple cohorts of pediatric T-cell acute lymphoblastic leukemia: a Children's Oncology Group study

Amanda L Cleaver et al. Mol Cancer. .

Abstract

Background: Continuous complete clinical remission in T-cell acute lymphoblastic leukemia (T-ALL) is now approaching 80% due to the implementation of aggressive chemotherapy protocols but patients that relapse continue to have a poor prognosis. Such patients could benefit from augmented therapy if their clinical outcome could be more accurately predicted at the time of diagnosis. Gene expression profiling offers the potential to identify additional prognostic markers but has had limited success in generating robust signatures that predict outcome across multiple patient cohorts. This study aimed to identify robust gene classifiers that could be used for the accurate prediction of relapse in independent cohorts and across different experimental platforms.

Results: Using HG-U133Plus2 microarrays we modeled a five-gene classifier (5-GC) that accurately predicted clinical outcome in a cohort of 50 T-ALL patients. The 5-GC was further tested against three independent cohorts of T-ALL patients, using either qRT-PCR or microarray gene expression, and could predict patients with significantly adverse clinical outcome in each. The 5-GC featured the interleukin-7 receptor (IL-7R), low-expression of which was independently predictive of relapse in T-ALL patients. In T-ALL cell lines, low IL-7R expression was correlated with diminished growth response to IL-7 and enhanced glucocorticoid resistance. Analysis of biological pathways identified the NF-kappaB and Wnt pathways, and the cell adhesion receptor family (particularly integrins) as being predictive of relapse. Outcome modeling using genes from these pathways identified patients with significantly worse relapse-free survival in each T-ALL cohort.

Conclusions: We have used two different approaches to identify, for the first time, robust gene signatures that can successfully discriminate relapse and CCR patients at the time of diagnosis across multiple patient cohorts and platforms. Such genes and pathways represent markers for improved patient risk stratification and potential targets for novel T-ALL therapies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Kaplan-Meier survival curves for patients predicted as CCR or relapse using the 5-GC model in (A) Training Cohort (n = 50); (B) Validation Cohort (n = 34); (C) COG 9404 (Winter et al, n = 44); (D) POG 8704 (Winter et al, n = 41).
Figure 2
Figure 2
Functional relevance of IL-7R as a prognostic marker. (A) Kaplan-Meier survival curves based on levels of IL-7R (qRT-PCR mRNA expression tertiles) in the Training Cohort; (B) IL-7R mRNA expression in a panel of T-ALL cell lines measured by qRT-PCR; (C) Cell surface IL-7R (CD127) protein expression in T-ALL cell lines measured by flow cytometry; (D) Growth response of T-ALL cell lines over 4 days to exogenous IL-7 (10 ng/ml) as measured by MTT (% proliferation compared to medium control).
Figure 3
Figure 3
Kaplan-Meier survival curves for patients predicted as CCR or relapse using the 14 gene 'Cell Adhesion Receptor' biological model in (A) Training Cohort (n = 50); (B) COG 9404 (Winter et al, n = 44); (C) POG 8704 (Winter et al, n = 41).

Similar articles

Cited by

References

    1. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–1043. doi: 10.1016/S0140-6736(08)60457-2. - DOI - PubMed
    1. Goldberg JM, Silverman LB, Levy DE, Dalton VK, Gelber RD, Lehmann L, Cohen HJ, Sallan SE, Asselin BL. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 2003;21:3616–3622. doi: 10.1200/JCO.2003.10.116. - DOI - PubMed
    1. Pullen J, Shuster JJ, Link M, Borowitz M, Amylon M, Carroll AJ, Land V, Look AT, McIntyre B, Camitta B. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia. 1999;13:1696–1707. doi: 10.1038/sj/leu/2401555. - DOI - PubMed
    1. Seibel NL, Steinherz PG, Sather HN, Nachman JB, Delaat C, Ettinger LJ, Freyer DR, Mattano LA Jr, Hastings CA, Rubin CM. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood. 2008;111:2548–2555. doi: 10.1182/blood-2007-02-070342. - DOI - PMC - PubMed
    1. Moricke A, Reiter A, Zimmermann M, Gadner H, Stanulla M, Dordelmann M, Loning L, Beier R, Ludwig WD, Ratei R. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111:4477–4489. doi: 10.1182/blood-2007-09-112920. - DOI - PubMed

Publication types

MeSH terms