Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage
- PMID: 20460513
- PMCID: PMC2880188
- DOI: 10.1158/0008-5472.CAN-09-3028
Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage
Abstract
Protein acetylation is a reversible process regulated by histone deacetylases (HDAC) that is often altered in human cancers. Suberoylanilide hydroxamic acid (SAHA) is the first HDAC inhibitor to be approved for clinical use as an anticancer agent. Given that histone acetylation is a key determinant of chromatin structure, we investigated how SAHA may affect DNA replication and integrity to gain deeper insights into the basis for its anticancer activity. Nuclear replication factories were visualized with confocal immunofluorescence microscopy and single-replicon analyses were conducted by genome-wide molecular combing after pulse labeling with two thymidine analogues. We found that pharmacologic concentrations of SAHA induce replication-mediated DNA damage with activation of histone gammaH2AX. Single DNA molecule analyses indicated slowdown in replication speed along with activation of dormant replication origins in response to SAHA. Similar results were obtained using siRNA-mediated depletion of HDAC3 expression, implicating this HDAC member as a likely target in the SAHA response. Activation of dormant origins was confirmed by molecular analyses of the beta-globin locus control region. Our findings demonstrate that SAHA produces profound alterations in DNA replication that cause DNA damage, establishing a critical link between robust chromatin acetylation and DNA replication in human cancer cells.
Copyright 2010 AACR.
Conflict of interest statement
No conflict of interest.
Figures
References
-
- Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet. 2007;8:588–600. - PubMed
-
- Anglana M, Apiou F, Bensimon A, Debatisse M. Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell. 2003;114:385–94. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
