Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jul;10(14):2589-604.
doi: 10.1002/pmic.200900523.

Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production

Affiliations

Chloride intracellular channel 1 identified using proteomic analysis plays an important role in the radiosensitivity of HEp-2 cells via reactive oxygen species production

Jae-Sung Kim et al. Proteomics. 2010 Jul.

Abstract

The nature of the molecules underlying the radioresistance phenotype of laryngeal cancer cells remains to be established. We initially generated radioresistant laryngeal cancer cell lines from human HEp-2 cells with fractionated radiation. These RR-HEp-2 cells and isolated clones displayed more radioresistant and anti-apoptotic phenotypes than parental HEp-2 cells after radiation. Characteristics of RR-Hep-2 cell lines were confirmed by upregulation of radioresistance-related genes, such as epidermal growth factor receptor, Hsp90, and Bcl-xl. Subsequently, we examined proteome changes between HEp-2 and RR-HEp-2 cells and identified 16 proteins showing significantly altered expression levels. Interestingly, protein expression of chloride intracellular channel 1 (CLIC1) was markedly suppressed in RR-HEp-2 cells, compared with non-irradiated control cells. Suppression of CLIC1 with an indanyloxyacetic acid-94 or small interfering RNA led to radioresistance in HEp-2 cells by suppressing the radiation-induced cellular ROS level. However, ectopic overexpression of CLIC1 induced radiosensitivity in RR-HEp-2 cells via induction of ROS level after radiation, suggesting that the protein acts as a positive regulator of ROS production. Our results collectively indicate that suppression of CLIC1 contributes to acquisition of the radioresistance phenotype of laryngeal cancer cells via inhibition of ROS production, implying that this protein is an important candidate molecule for radiotherapy in radioresistant laryngeal cancer cells.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources