Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 May 6;6(5):e1000883.
doi: 10.1371/journal.ppat.1000883.

Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa

Affiliations
Randomized Controlled Trial

Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa

Thilo Köhler et al. PLoS Pathog. .

Abstract

With the rising development of bacterial resistance the search for new medical treatments beyond conventional antimicrobials has become a key aim of public health research. Possible innovative strategies include the inhibition of bacterial virulence. However, consideration must be given to the evolutionary and environmental consequences of such new interventions. Virulence and cooperative social behaviour of the bacterium Pseudomonas aeruginosa rely on the quorum-sensing (QS) controlled production of extracellular products (public goods). Hence QS is an attractive target for anti-virulence interventions. During colonization, non-cooperating (and hence less virulent) P. aeruginosa QS-mutants, benefiting from public goods provided by wild type isolates, naturally increase in frequency providing a relative protection from invasive infection. We hypothesized that inhibition of QS-mediated gene expression removes this growth advantage and selection of less virulent QS-mutants, and maintains the predominance of more virulent QS-wild type bacteria. We addressed this possibility in a placebo-controlled trial investigating the anti-QS properties of azithromycin, a macrolide antibiotic devoid of bactericidal activity on P. aeruginosa, but interfering with QS, in intubated patients colonized by P. aeruginosa. In the absence of azithromycin, non-cooperating (and hence less virulent) lasR (QS)-mutants increased in frequency over time. Azithromycin significantly reduced QS-gene expression measured directly in tracheal aspirates. Concomitantly the advantage of lasR-mutants was lost and virulent wild-type isolates predominated during azithromycin treatment. We confirmed these results in vitro with fitness and invasion experiments. Azithromycin reduced growth rate of the wild-type, but not of the lasR-mutant. Furthermore, the lasR-mutant efficiently invaded wild-type populations in the absence, but not in the presence of azithromycin. These in vivo and in vitro results demonstrate that anti-virulence interventions based on QS-blockade diminish natural selection towards reduced virulence and therefore may increase the prevalence of more virulent genotypes in the Hospital environment. More generally, the impact of intervention on the evolution of virulence of pathogenic bacteria should be assessed.

Trial registration: ClinicalTrials.gov NCT00610623.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Patient enrollment and follow-up.
Figure 2
Figure 2. In patient QS-inhibition in azithromycin-treated patients.
In patient QS-gene expression was determined as described. Tracheal aspirates from both day −1 and day x with bacterial RNA of adequate quality were available for twelve placebo and eleven azithromycin patients. Expression of QS-circuit gene lasI, QS-target gene rhlA and QS-independent gene trpD measured in tracheal aspirates is shown as the relative value (%) of the last accessible day (Dx) compared to day −1 (set as 100%). A horizontal line indicates the median expression levels. P values were calculated using Mann-Whitney tests.
Figure 3
Figure 3. Evolution of lasR mutants and elastase production in azithromycin-treated and untreated patients.
Change in the proportion of lasR mutants (a) and mean elastase production (b) through time. Solid lines and closed symbols indicate azithromycin-treated patients, and dashed lines and open symbols indicate placebo group. Note that data is presented to day 11 of colonization, despite some samples being collected up to 20 days, because of very small sample sizes (six isolates) by day 12 in the azithromycin-treated group. However, qualitatively identical results were obtained when the whole data set was analysed. The change in the proportion of lasR mutants and elastase through time was analysed using logistic regression, corrected for under-dispersion, and General linear Modelling, respectively in GenStat 10.
Figure 4
Figure 4. lasR mutant growth rates and invasion of wild type populations in the presence and absence of azithromycin.
In vitro densities of wildtype (black) and lasR mutant (grey) after 72 hours growth in M9 salts BSA medium (a), and selection coefficients of lasR mutant relative to wildtype (b) as a function of azithromycin (AZM). Bars show means (± SEM) of six replicates. All differences (wildtype versus lasR) in the presence of azithromycin are statistically significant (p<0.05).

References

    1. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003;22:3803–3815. - PMC - PubMed
    1. Bjarnsholt T, Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci. 2007;362:1213–1222. - PMC - PubMed
    1. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998;4:551–560. - PMC - PubMed
    1. Molinari G, Guzman CA, Pesce A, Schito GC. Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics. J Antimicrob Chemother. 1993;31:681–688. - PubMed
    1. Tateda K, Comte R, Pechere JC, Köhler T, Yamaguchi K, et al. Azithromycin Inhibits Quorum Sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45:1930–1933. - PMC - PubMed

Publication types

MeSH terms

Associated data