Limits of Free Energy Computation for Protein-Ligand Interactions
- PMID: 20467461
- PMCID: PMC2866028
- DOI: 10.1021/ct100102q
Limits of Free Energy Computation for Protein-Ligand Interactions
Abstract
A detailed error analysis is presented for the computation of protein-ligand interaction energies. In particular, we show that it is probable that even highly accurate computed binding free energies have errors that represent a large percentage of the target free energies of binding. This is due to the observation that the error for computed energies quasi-linearly increases with the increasing number of interactions present in a protein-ligand complex. This principle is expected to hold true for any system that involves an ever increasing number of inter or intra-molecular interactions (e.g. ab initio protein folding). We introduce the concept of best-case scenario errors (BCS(errors)) that can be routinely applied to docking and scoring exercises and used to provide errors bars for the computed binding free energies. These BCS(errors) form a basis by which one can evaluate the outcome of a docking and scoring exercise. Moreover, the resultant error analysis enables the formation of an hypothesis that defines the best direction to proceed in order to improve scoring functions used in molecular docking studies.
Figures
Similar articles
-
The energy computation paradox and ab initio protein folding.PLoS One. 2011 Apr 25;6(4):e18868. doi: 10.1371/journal.pone.0018868. PLoS One. 2011. PMID: 21541343 Free PMC article.
-
Integrating Quantum Mechanics into Protein-Ligand Docking: Toward Higher Accuracy and Reliability.Res Sq [Preprint]. 2024 Dec 5:rs.3.rs-5433993. doi: 10.21203/rs.3.rs-5433993/v1. Res Sq. 2024. PMID: 39678339 Free PMC article. Preprint.
-
Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-ligand Complexes.J Chem Theory Comput. 2011 Mar 8;7(3):790-797. doi: 10.1021/ct100563b. J Chem Theory Comput. 2011. PMID: 21666841 Free PMC article.
-
Advances in Docking.Curr Med Chem. 2019;26(42):7555-7580. doi: 10.2174/0929867325666180904115000. Curr Med Chem. 2019. PMID: 30182836 Review.
-
An extensive assessment of the performance of pairwise and many-body interaction potentials in reproducing ab initio benchmark binding energies for water clusters n = 2-25.Phys Chem Chem Phys. 2023 Mar 8;25(10):7120-7143. doi: 10.1039/d2cp03241d. Phys Chem Chem Phys. 2023. PMID: 36853239 Review.
Cited by
-
The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.J Comput Aided Mol Des. 2021 Apr;35(4):433-451. doi: 10.1007/s10822-020-00354-6. Epub 2020 Oct 27. J Comput Aided Mol Des. 2021. PMID: 33108589 Free PMC article.
-
Optimal Dielectric Boundary for Binding Free Energy Estimates in the Implicit Solvent.J Chem Inf Model. 2024 Dec 23;64(24):9433-9448. doi: 10.1021/acs.jcim.4c01190. Epub 2024 Dec 10. J Chem Inf Model. 2024. PMID: 39656550 Free PMC article.
-
Rationalizing protein-ligand interactions via the effective fragment potential method and structural data from classical molecular dynamics.J Chem Phys. 2025 Jan 28;162(4):045101. doi: 10.1063/5.0247878. J Chem Phys. 2025. PMID: 39868918
-
Prediction of SAMPL3 host-guest binding affinities: evaluating the accuracy of generalized force-fields.J Comput Aided Mol Des. 2012 May;26(5):517-25. doi: 10.1007/s10822-012-9544-3. Epub 2012 Jan 25. J Comput Aided Mol Des. 2012. PMID: 22274835 Free PMC article.
-
The energy computation paradox and ab initio protein folding.PLoS One. 2011 Apr 25;6(4):e18868. doi: 10.1371/journal.pone.0018868. PLoS One. 2011. PMID: 21541343 Free PMC article.
References
-
- Dirac PAM. Proc. R. Soc. London Series a. 1929;123:714–733.
-
- Helgaker T, Klopper W, Tew DP. Mol. Phys. 2008;106:2107–2143.
-
- Bartlett RJ, Musial M. Reviews of Modern Physics. 2007;79:291–352.
-
- Brooijmans N, Kuntz ID. Ann. Rev. Biophys. Biomolec. Struct. 2003;32:335–373. - PubMed
-
- Leach AR, Shoichet BK, Peishoff CE. J. Med. Chem. 2006;49:5851–5855. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources