Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Jul;84(7):553-62.
doi: 10.1007/s00204-010-0551-7. Epub 2010 May 14.

Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

Affiliations
Comparative Study

Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

Damien van Berlo et al. Arch Toxicol. 2010 Jul.

Abstract

Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m(3)), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-alpha, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
mRNA expression of HO-1, iNOS, COX-2 and CYP1A1 in rat lungs after 4 h (a) or 18 h (b) recovery from diesel engine exhaust (DEE) inhalation exposure. Data represent mean values and standard errors (n = 5) and are expressed as GADPH-adjusted fold-increase mRNA expression compared to controls. * p < 0.05 versus air-exposed group
Fig. 2
Fig. 2
mRNA expression of HO-1 (a), iNOS (b), COX-2 (c) and CYP1A1 (d) in specific rat brain regions after 4 h recovery from diesel engine exhaust (DEE) inhalation exposure. Data are shown as mean and SEM (n = 5 per treatment) of the GAPDH adjusted mRNA expression, relative to the mean mRNA expression as measured in the cerebellum of the air-exposed animals for each gene. * p < 0.05 versus air exposure in the same brain region
Fig. 3
Fig. 3
mRNA expression of HO-1 (a), iNOS (b), COX-2 (c) and CYP1A1 (d) in specific rat brain regions after 18 h recovery from diesel engine exhaust (DEE) inhalation exposure. Data are mean and SEM (n = 5 per treatment) of GAPDH adjusted mRNA expression, relative to the mean mRNA expression as measured in the cerebellum. * p < 0.05 versus air exposure in the same brain region
Fig. 4
Fig. 4
HO-1 protein expression by immunohistochemistry (a, b) and ELISA (c) in rat brain tissue after diesel engine exhaust (DEE) inhalation exposure. Representative HO-1 staining in rat cerebellum after 24 h recovery from a 2 h exposure to filtered air (a) or DEE (b). Original magnification ×25. Panel C shows HO-1 expression presented as pg/mg total protein, in brain section lysates

References

    1. Abbas I, Saint-Georges F, Billet S, Verdin A, Mulliez P, Shirali P, Garcon G. Air pollution particulate matter (PM2.5)-induced gene expression of volatile organic compound and/or polycyclic aromatic hydrocarbon-metabolizing enzymes in an in vitro coculture lung model. Toxicol In Vitro. 2009;23:37–46. doi: 10.1016/j.tiv.2008.09.020. - DOI - PubMed
    1. Abraham NG, Drummond GS, Lutton JD, Kappas A. The biological significance and physiological role of heme oxygenase. Cell Physiol Biochem. 1996;6:129–168. doi: 10.1159/000154819. - DOI
    1. Ahn EK, Yoon HK, Jee BK, Ko HJ, Lee KH, Kim HJ, Lim Y. COX-2 expression and inflammatory effects by diesel exhaust particles in vitro and in vivo. Toxicol Lett. 2008;176:178–187. doi: 10.1016/j.toxlet.2007.11.005. - DOI - PubMed
    1. Bidmon HJ, Emde B, Oermann E, Kubitz R, Witte OW, Zilles K. Heme oxygenase-1 (HSP-32) and heme oxygenase-2 induction in neurons and glial cells of cerebral regions and its relation to iron accumulation after focal cortical photothrombosis. Exp Neurol. 2001;168:1–22. doi: 10.1006/exnr.2000.7456. - DOI - PubMed
    1. Block ML, Wu X, Pei Z, Li G, Wang T, Qin L, Wilson B, Yang J, Hong JS, Veronesi B. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. Faseb J. 2004;18:1618–1620. - PubMed

Publication types

MeSH terms