Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing
- PMID: 20472684
- PMCID: PMC2892099
- DOI: 10.1101/gr.102921.109
Rapid identification of heterozygous mutations in Drosophila melanogaster using genomic capture sequencing
Abstract
One of the key advantages of using Drosophila melanogaster as a genetic model organism is the ability to conduct saturation mutagenesis screens to identify genes and pathways underlying a given phenotype. Despite the large number of genetic tools developed to facilitate downstream cloning of mutations obtained from such screens, the current procedure remains labor intensive, time consuming, and costly. To address this issue, we designed an efficient strategy for rapid identification of heterozygous mutations in the fly genome by combining rough genetic mapping, targeted DNA capture, and second generation sequencing technology. We first tested this method on heterozygous flies carrying either a previously characterized dac(5) or sens(E2) mutation. Targeted amplification of genomic regions near these two loci was used to enrich DNA for sequencing, and both point mutations were successfully identified. When this method was applied to uncharacterized twr mutant flies, the underlying mutation was identified as a single-base mutation in the gene Spase18-21. This targeted-genome-sequencing method reduces time and effort required for mutation cloning by up to 80% compared with the current approach and lowers the cost to <$1000 for each mutant. Introduction of this and other sequencing-based methods for mutation cloning will enable broader usage of forward genetics screens and have significant impacts in the field of model organisms such as Drosophila.
Figures


References
-
- Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Packard CJ, et al. 2007. Direct selection of human genomic loci by microarray hybridization. Nat Methods 4: 903–905 - PubMed
-
- Ansorge WJ 2009. Next-generation DNA sequencing techniques. New Biotechnol 25: 195–203 - PubMed
-
- Bau S, Schracke N, Kranzle M, Wu H, Stahler PF, Hoheisel JD, Beier M, Summerer D 2009. Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Anal Bioanal Chem 393: 171–175 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases